Ultraschall Med 2011; 32: 95-101
DOI: 10.1055/s-0029-1245369
Originalarbeiten/Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Transcranial Perfusion Sonography Using a Low Mechanical Index and Pulse Inversion Harmonic Imaging: Reliability, Inter-/Intraobserver Variability

Transkranielle Perfusionssonografie mit niedrigem mechanischem Index und Pulse Inversion Harmonic Imaging: Reliabilität, Inter-/Intra-Observer-VariabilitätJ. U. Harrer1 , 2 , J. Valaikiene3 , 4 , H. Koch4 , 5 , R. Knorr4 , M. Horn4 , 6 , G. Ickenstein4 , 7 , U. Bogdahn4 , F. Schlachetzki4
  • 1Neurology, MVZ at Caritas Klinik St. Theresia
  • 2Neurology, RWTH Aachen University Hospital
  • 3Neurology, University of Vilnius, Lithuania
  • 4Neurology, Universityclinic Regensburg
  • 5Psychiatry, Helios Klinikum Aue
  • 6Neurology, Klinikum Bad Hersfeld
  • 7Neurology, Helios Klinikum Aue
Further Information

Publication History

received: 22.12.2009

accepted: 18.3.2010

Publication Date:
22 April 2010 (online)

Zusammenfassung

Ziel: Die transkranielle Perfusionssonografie (TPS) ist eine neue, nicht invasive Methode zur Darstellung der Hirnperfusion. Ziel war die Bewertung einer neuen TPS-Modalität, die einen niedrigen MI mit einer hohen (nahezu Echtzeit) Bildrate kombiniert und die Untersuchung deren Intra- und Interobserver-Variabilität. Material und Methoden: 10 gesunde Probanden erhielten 3-mal TPS mit einem niedrigen MI (1,0) und einer hohen Bildrate (8,3 Hz). Die Untersuchungen wurden von 2 Sonografeuren im Cross-over-Design durchgeführt: 1. 2-fache Messungen bei je 5 Probanden (Intraobserver-Testung); und 2. einfache Untersuchung der jeweils anderen 5 Probanden (Interobserver-Testung). Aus 8 etablierten Regions of Interest (ROI) wurden Zeitintensitätskurven (TIC) und deren Maximalintensität (PI), Zeit-bis-zur-PI (TTP), Fläche-unter-der-Kurve (AUC) und zerebrale Transitzeit (CTT) berechnet. Die Qualität der TIC wurde mithilfe des Determinationskoeffizienten abgebildet. TIC-Parameter wurden deskriptiv dargestellt. Intra- und Interobserver-Variabilität wurde nach Spearman untersucht. Ergebnisse: Die TIC-Qualität war sehr gut (r2 = 0,92, 0,87 – 0,97). Die Intraobserver-Variabilität war bei dem erfahreneren Untersucher geringer (r = 0,70 vs. r = 0,29). Die Interobserver-Reliabilität lag bei r = 0,34 (p < 0,05) und war damit moderat. TTP (25,7 – 28,1 s; Mittel 26,8 s) und CTT (8,2 – 10,7 s; Mittel 9,9 s) waren die robustesten Parameter. Schlussfolgerung: TPS mit niedrigem MI erlaubt transkranielle Perfusionsuntersuchungen unter nahezu Echtzeitbedingungen. Dies ermöglicht eine bessere Kontrolle der Sondenposition. Solide Ultraschallerfahrung gewährt eine hohe Reliabilität dieser Technik und macht TPS zu einem interessanten Modus für Diagnostik und Follow-up von Perfusionsveränderungen z. B. bei Schlaganfällen oder anti-angiogenetischer Tumortherapie.

Abstract

Purpose: Transcranial perfusion sonography (TPS) is an emerging noninvasive bedside method for evaluating brain perfusion. The purpose was to assess the feasibility of a low MI/almost real-time frame rate approach and to test its intra-/interobserver variability. Materials and Methods: 10 healthy volunteers were investigated 3 times with TPS at a low MI (1.0) and a high frame rate (8.3 Hz). Investigations were performed by 2 sonographers in a cross-over design: 1.) twofold measurements each with 5 volunteers (intraobserver test), and 2.) single measurements of the other 5 volunteers (interobserver test). From 8 established regions of interest (ROI), time-intensity curves (TIC) with the following parameters were calculated: peak intensity (PI), time-to-PI (TTP), area-under-curve (AUC), and cerebral transit time (CTT). The TIC quality was described by the coefficient of determination. TIC parameters were presented descriptively. Intra- and interobserver variability was tested by Spearman’s correlation. Results: The overall quality of the TIC was very good (mean r2 = 0.92, 0.87 – 0.97). TTP (25.7 – 28.1 sec; mean 26.8 sec) and CTT (8.2 – 10.7 sec; mean 9.9 sec) were the most robust parameters. The intraobserver variability was lower with the more experienced sonographer (r = 0.70 vs. r = 0.29). The interobserver reliability was r = 0.34 (p < 0.05). Conclusion: Low MI TPS allows for nearly real-time imaging facilitating probe control. Sound sonographer experience allows for a high reliability and makes TPS an interesting tool for the diagnosis and follow-up of perfusion changes, e. g. in stroke or anti-angiogenic brain tumor therapy.

References

  • 1 Postert T, Federlein J, Weber S et al. Second harmonic imaging In acute middle cerebral artery infarction. Preliminary results.  Stroke. 1999;  30 1702-1706
  • 2 Meairs S, Daffertshofer M, Neff W et al. Pulse-inversion contrast harmonic imaging: ultrasonographic assessment of cerebral perfusion.  Lancet. 2000;  355 550-551
  • 3 Stolz E, Allendörfer J, Jauss M et al. Sonographic harmonic grey scale imaging of brain perfusion: scope of a new method demonstrated in selected cases.  Ultraschall in Med. 2002;  81 320-324
  • 4 Seidel G, Albers T, Meyer K et al. Perfusion harmonic imaging in acute middle cerebral artery infarction.  Ultrasound Med Biol. 2003;  29 1245-1251
  • 5 Harrer J U, Mayfrank L, Mull M et al. Second harmonic imaging: a new ultrasound technique to assess human brain tumour perfusion.  J Neurol Neurosurg Psychiatry. 2003;  74 333-338
  • 6 Harrer J U, Klötzsch C, Stracke C P et al. Cerebral perfusion sonography in comparison with perfusion MRT: a study in healthy volunteers.  Ultraschall in Med. 2004;  25 263-269
  • 7 Shiogai T, Takayasu N, Mizuno T et al. Comparison of transcranial brain tissue perfusion images between ultraharmonic, second harmonic, and power harmonic imaging.  Stroke. 2004;  35 687-693
  • 8 Bartels E, Bittermann H J. Kontrastverstärkte transkranielle sonographische Darstellung der zerebralen Perfusion bei Schlaganfällen nach dekompressiver Kraniotomie.  Ultraschall in Med. 2004;  25 206-213
  • 9 Eyding J, Krogias C, Wilkening W et al. Detection of cerebral perfusion abnormalities in acute stroke using phase inversion harmonic imaging (PIHI): preliminary results.  J Neurol Neurosurg Psychiatry. 2004;  75 926-929
  • 10 Wiesmann M, Meyer K, Albers T et al. Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke.  Stroke. 2004;  35 508-513
  • 11 Becker G, Griewing B. Examination techniques. In Bogdahn U, Becker G, Schlachetzki F, ed Echoenhancers and Transcranial Color Duplex Sonography.. Berlin, Vienna: Blackwell Science; 1998: 219-250
  • 12 Barnett S B, Rott H D, ter Haar G R et al. The sensitivity of biological tissue to ultrasound.  Ultrasound Med Biol. 1997;  23 805-812
  • 13 Seidel G, Meyer K. Harmonic imaging – a new method for the sonographic assessment of cerebral perfusion.  Eur J Ultrasound. 2001;  14 103-113
  • 14 Harrer J U, Hornen S, Valaikiene J et al. Transcranial Ultrasound Perfusion Imaging: Implementation of a low MI and a high frame rate.  Ultraschall in Med. 2007;  28 380-386
  • 15 Zar J H. Biostatistical Analysis. Englewood Cliffs: Prentice-Hall Int. Edition; 1984
  • 16 Siegel S, Castellan N J. Non-parametric Statistics for the Behavioural Sciences. New York: McGaw-Hill; 2000
  • 17 Postert T, Muhs A, Meves S et al. Transient response harmonic imaging.  Stroke. 1998;  29 1901-1907
  • 18 Harrer J U, Klötzsch C. Second harmonic imaging of the human brain: The practicability of coronal insonation planes and alternative perfusion parameters.  Stroke. 2002;  33 1530-1535
  • 19 Harrer J U, Möller-Hartmann W, Oertel M F et al. Perfusion imaging of high-grade gliomas: comparison of contrast harmonic imaging and magnetic resonance imaging.  J Neurosurg. 2004;  101 700-703
  • 20 Schlachetzki F, Hoelscher T, Dorenbeck U et al. Sonographic parenchymal and brain perfusion imaging: preliminary results in four patients following decompressive surgery for malignant middle cerebral artery infarct.  Ultrasound Med Biol. 2001;  27 21-31
  • 21 Kern R, Perren F, Schoenberger K et al. Ultrasound microbubble destruction imaging in acute middle cerebral artery stroke.  Stroke. 2004;  35 1665-1670
  • 22 Seidel G, Cangur H, Meyer-Wiethe K et al. On the ability of ultrasound parametric perfusion imaging to predict the area of infarction in acute ischemic stroke.  Ultraschall in Med. 2006;  27 543-548
  • 23 Bartels E, Henning S, Wellmer A et al. Bestimmung des zerebralen Perfusionsdefizits bei Schlaganfallpatienten mittels der neuen transkraniellen kontrastmittelverstärkten CPS™-Technologie – Vorläufige Ergebnisse.  Ultraschall in Med. 2005;  26 478-486
  • 24 Seidel G, Meyer-Wiethe K, Berdien G et al. Ultrasound perfusion imaging in acute middle cerebral artery infarction predicts outcome.  Stroke. 2004;  35 1107-1111
  • 25 Meyer-Wiethe K, Cangür H, Schindler A et al. Ultrasound perfusion imaging: determination of thresholds for the identification of critically disturbed perfusion in acute ischemic stroke – a pilot study.  Ultrasound Med Biol. 2007;  33 851-856
  • 26 Singer O C, Sitzer M, du Mesnil de Rochemont R et al. Practical limitations of acute stroke MRI due to patient-related problems.  Neurology. 2004;  62 1848-1849
  • 27 Kaijser M, Larsson J,  Rosenberg L et al. Anterior Dynamic Ultrasound of the Infant Hip: Evaluation of Investigator Dependence.  Acta Radiol. 2009;  50 690-695
  • 28 Strauss S, Gavish E, Gottlieb P et al. Interobserver and Intraobserver Variability in the Sonographic Assessment of Fatty Liver.  Am J Roentgenol. 2007;  189 320-323
  • 29 Shen Q, Stuart J, Venkatesh B et al. Inter Observer Variability of the Transcranial Doppler Ultrasound Technique: Impact of Lack of Practice on the Accuracy of Measurement.  J Clin Mon Comp. 1999;  15 179-184
  • 30 Vos M J, Uitdehaag B MJ, Barkhof F et al. Interobserver variability in the radiological assessment of response to chemotherapy in glioma.  Neurology. 2003;  60 826-830
  • 31 Meves S H, Wilkening W, Thies T et al. Comparison between echo contrast agent-specific imaging modes and perfusion-weighted magnetic resonance imaging for the assessment of brain perfusion.  Stroke. 2002;  33 2433-2437
  • 32 Hacke W, Jansen O, Schellinger P D et al. Magnetresonanztomographie beim akuten Schlaganfall: Möglichkeiten, Ergebnisse und Perspektiven.  Dtsch Arztebl. 2002;  99 A1361-A1370
  • 33 Neumann-Haefelin T, Wittsack H J, Wenserski F et al. Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke.  Stroke. 1999;  30 1591-1597
  • 34 Sobesky J, Zaro Weber O, Lehnhardt F G et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke.  Stroke. 2004;  35 2843-2847
  • 35 Eyding J, Nolte-Martin A, Krogias C et al. Changes of contrast-specific ultrasonic cerebral perfusion patterns in the course of stroke; reliability of region-wise and parametric imaging analysis.  Ultrasound Med Biol. 2007;  33 329-334
  • 36 Eyding J, Krogias C, Schöllhammer M et al. Contrast-enhanced ultrasonic parametric perfusion imaging detects dysfunctional tissue at risk in acute MCA stroke.  J Cereb Blood Flow Metab. 2006;  26 576-582
  • 37 Eyding J, Krogias C, Wilkening W et al. Parameters of cerebral perfusion in phase-inversion harmonic imaging (PIHI) ultrasound examinations.  Ultrasound Med Biol. 2003;  29 1379-1385
  • 38 Grandin C B, Duprez T P, Smith A M et al. Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study of relative and quantitative measurements.  Radiology. 2002;  223 361-370
  • 39 Harrer J U, Parker G JM, Haroon A H et al. Comparative Study of Methods for Determining Vascular Permeability and Blood Volume in Human Gliomas.  J Magn Reson Imaging. 2004;  20 748-75

Dr. Judith U. Harrer

Neurology, MVZ at Caritas Klinik St. Theresia

Rheinstr. 2

66113 Saarbrücken

Germany

Phone: ++ 49/6 81- 4 06 32 01

Fax: ++ 49/6 81- 4 06 32 03

Email: judith.harrer@web.de