N. ISHIDA, Y. SHIMAMOTO, M. MURAKAMI* (KYOTO UNIVERSITY, JAPAN)

Stereoselective Synthesis of (E)-(Trisubstituted Alkenyl)borinic Esters: Stereochemistry Reversed by Ligand in the Palladium-Catalyzed Reaction of Alkynylborates with Aryl Halides

Org. Lett. 2009, 11, 5434-5437.

Synthesis of (E)- and (Z)-Tamoxifen

Significance: (*Z*)-Tamoxifen is used for the treatment of estrogen receptor positive breast cancer. The synthesis depicted features a syn-carbopalladation of alkynyl borate **B** followed by a 1,2-aryl migration ($\mathbf{C} \to \mathbf{D}$) to generate a trisubstituted alkenylborane in high yield and stereoselectivity. Oxidation of the alkenylbornane **D** with Me₃NO afforded the alkenylborinic ester **E** that participated in an efficient Suzuki–Miyaura coupling to give (*Z*)-tamoxifen.

Comment: The fate of the *syn*-carbopalladation product \mathbf{C} depended on the ligand. When the ligand was small $[(2-\text{Tol})_3P]$, a 1,3-aryl migration took place $(\mathbf{C} \to \mathbf{G})$ to generate the alkenylborane \mathbf{H} after reductive elimination. Alkenylborane \mathbf{H} was converted into (E)-tamoxifen as shown. The borate derived from \mathbf{B} is stable towards air and moisture. A further 14 examples of the synthesis of alkenylborinic esters via the 1,2-aryl migration pathway are presented.

 $\textbf{SYNFACTS Contributors:} \ Philip \ Kocienski$

Synfacts 2010, 4, 0375-0375 Published online: 22.03.2010

DOI: 10.1055/s-0029-1219492; Reg-No.: K01810SF

Category

Synthesis of Natural Products and Potential Drugs

Key words

tamoxifen
carbopalladation
Suzuki-Miyaura
coupling
borinic esters
alkynyl borates
palladium

2010 © THIEME STUTTGART • NEW YORK