Long Helicenes by Alkyne Cycloisomerization

Significance: Helicenes have many possible applications in the areas of materials science, asymmetric catalysis, and molecular recognition; however, long helicenes represent challenging synthetic targets. Reported here is a synthetic route to undecacyclic helicenes utilizing a cobaltcatalyzed intramolecular [2+2+2] alkyne cycloisomerization. This key step forms six new rings of the helicene backbone in a single transformation.
synfacts Contributors: Timothy M. Swager, David M. Chenoweth Synfacts 2009, 11, 1221-1221 Published online: 22.10.2009
DOI: 10.1055/s-0029-1218094; Reg-No.: S11709SF

Comment: Cobalt catalysts performed better than nickel catalysts for the cycloisomerization reaction with $\mathrm{CpCo}(\mathrm{CO})_{2} / \mathrm{Ph}_{3} \mathrm{P}$ giving higher yields than $\mathrm{CpCo}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ or $\mathrm{Ni}(\mathrm{cod})_{2}$. A slightly modified version of hexyne $\mathbf{4}$ underwent diastereoselective cyclization to afford a 10:90 ratio of products similar to $\mathbf{5}$ in 26% yield. Racemic helicene $\mathbf{7}$ was purified by chiral HPLC and the racemization barrier at $230^{\circ} \mathrm{C}$ was found to be $37.5 \mathrm{kcal} / \mathrm{mol}$.

