Synthesis of Estrone Methyl Ether

Preparation of catalyst
$$\mathbf{C}$$
:

$$\begin{array}{c}
H \\
Ph \\
Ph \\
CH_2Cl_2, 0 \text{ °C, 1 h} \\
\mathbf{G}
\end{array}$$

$$\begin{array}{c}
H \\
CH_2Cl_2, -78 \text{ °C, 0.5 h} \\
H \\
\mathbf{C}
\end{array}$$

Significance: Canales and Corey report a remarkably short and efficient synthesis of estrone methyl ether which exploits a novel *N*-methyloxazaborolidinium cation as a Lewis acid catalyst for an asymmetric Diels-Alder reaction. The paper cites ten further examples all proceeding with excellent yields and ee values. The reactions typically proceed in dichloromethane at -78 °C but in the estrone synthesis depicted, the cycloaddition was performed at room temperature. The ee of the adduct **D** (82%) was raised to 99% by one recrystallization.

Estrone methyl ether

Comment: The highly reactive catalyst **C** was generated in situ prior to use. It could not be generated by *N*-methylation of the corresponding oxazaborolidine; nor could it be generated by the reaction of *N*-methyl-1,1-diphenyl-pyrrolidinomethanol or the corresponding bistrimethylsilyl ether with ArBBr₂ or ArB(OTf)₂. For a related synthesis of estrone methyl ether see: Y.-Y. Yeung, R.-J. Chein, J. E. Corey *J. Am. Chem. Soc.* **2007**, *129*, 10346.

SYNFACTS Contributors: Philip Kocienski

Synfacts 2009, 2, 0117-0117 Published online: 22.01.2009

DOI: 10.1055/s-0028-1087603; Reg-No.: K17008SF

Synthesis of Natural Products and Potential Drugs

Key words

estrone

asymmetric Diels-Alder reaction

oxazaborolidine

