Subscribe to RSS
DOI: 10.1055/a-2803-0467
Cobalt-Catalyzed Electroreductive Cross-Coupling for the Synthesis of Atropisomeric 3-Arylindoles
Authors
Supported by: NSF of China 22101294,22361142834,22425111
Supported by: Strategic Priority Research Program of the Chinese Academy of Sciences XDA0540000, XDB0610000
Supported by: S&TCSM of Shanghai 21ZR1476500, 25ZR1401384
Funding Information This work was financially supported by NSF of China (22425111, 22361142834, and 22101294), National Key R&D Program of China (2021YFA1500100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA0540000, XDB0610000), and S&TCSM of Shanghai (21ZR1476500, 25ZR1401384).

Abstract
The synthesis of atropisomeric 3-arylindoles via transition metal-catalyzed reductive cross-coupling remains challenging due to their intrinsically low rotational barriers and the comparable electronic characteristics of the two coupling partners. Herein, we present a cobalt-catalyzed enantioselective electroreductive cross-coupling between indole bromides and aryl iodides. This method enables efficient access to atropisomeric 3-arylindoles with high chemo- and enantioselectivities. Notably, it successfully addresses the challenges posed by indole substrates lacking electron-withdrawing groups at the 2-position.
Publication History
Received: 17 November 2025
Accepted after revision: 02 February 2026
Accepted Manuscript online:
05 February 2026
Article published online:
16 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Schmidt TA, Hutskalova V, Sparr C. Nat Rev Chem 2024; 8: 497-517
- 1b Liu S-J, Zhao Q, Liu X-C. et al. Med Res Rev 2024; 44: 1971-2014
- 1c Cheng JK, Xiang S-H, Li S, Ye L, Tan B. Chem Rev 2021; 121: 4805-4902
- 1d Tajuddeen N, Feineis D, Ihmels H, Bringmann G. Acc Chem Res 2022; 55: 2370-2383
- 1e Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem Soc Rev 2021; 50: 2968-2983
- 1f Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem Rev 2011; 111: 563-639
- 2a Zhang F, Chen G-Q, Zhang X. Org Lett 2024; 26: 1623-1628
- 2b Wu P, Yu L, Gao C-H. et al. Fundam Res 2023; 3: 237-248
- 2c Luz JG, Carson MW, Condon B. et al. J Med Chem 2015; 58: 6607-6618
- 3a Ye X, Yu X, Deng R, Zhong F, Wu G. Adv Synth Catal 2024; 366: 1670-1706
- 3b Wang J, Wang Z, He W, Ye L. Chin J Org Chem 2024; 44: 1786-1792
- 3c Sun H-R, Sharif A, Chen J, Zhou L. Chem Eur J 2023; 29: e202300183
- 3d Cheng JK, Tan B. Chem Rec 2023; 23: e202300147
- 3e Zhang H-H, Shi F. Acc Chem Res 2022; 55: 2562-2580
- 3f Zhang X, Liu Y-Z, Shao H, Ma X. Molecules 2022; 27: 8517-8554
- 3g He X-L, Wang C, Wen Y-W, Wang Z, Qian S. ChemCatChem 2021; 13: 3547-3564
- 4a Zhang H-H, Wang C-S, Li C, Mei G-J, Li Y, Shi F. Angew Chem Int Ed 2017; 56: 116-121
- 4b Qi L-W, Mao J-H, Zhang J, Tan B. Nat Chem 2018; 10: 58-64
- 4c Lu S, Ong J-Y, Yang H. et al. J Am Chem Soc 2019; 141: 17062-17067
- 4d Lu D-L, Chen Y-H, Xiang S-H, Yu P, Tan B, Li S. Org Lett 2019; 21: 6000-6004
- 4e Jiang F, Chen K-W, Wu P, Zhang Y-C, Jiao Y, Shi F. Angew Chem Int Ed 2019; 58: 15104-15110
- 4f Ding W-Y, Yu P, An Q-J. et al. Chem 2020; 6: 2046-2059
- 4g Zhang H-H, Shi F. Acc Chem Res 2022; 55: 2562-2580
- 4h Wu P, Yu L, Gao C-H. et al. Fundam Res 2023; 3: 237-248
- 4i Liu YW, Chen YH, Cheng JK, Xiang SH, Tan B. Chem Synth 2023; 3: 11-18
- 5a He C, Hou M, Zhu Z, Gu Z. ACS Catal 2017; 7: 5316-5320
- 5b Wang C-S, Wei L, Fu C, Wang X-H, Wang C-J. Org Lett 2021; 23: 7401-7406
- 5c Surgenor RR, Liu X, Keenlyside MJH, Myers W, Smith MD. Nat Chem 2023; 15: 357-365
- 5d Nguyen NH, Seo S, Jang J, Kim H, Shin S. Org Lett 2024; 26: 7149-7154
- 5e Ye J, Song Q, Pan D. et al. Adv Synth Catal 2024; 366: 1064-1069
- 6a Chen W-W, Zhao Q, Xu M-H, Lin G-Q. Org Lett 2010; 12: 1072-1075
- 6b Qiu H, Shuai B, Wang Y-Z. et al. J Am Chem Soc 2020; 142: 9872-9878
- 6c Zuo Z, Kim RS, Watson DA. J Am Chem Soc 2021; 143: 1328-1333
- 6d Perveen S, Zhang S, Wang L. et al. Angew Chem Int Ed 2022; 61: e202212108
- 6e Zhang X, Wang J, Yang S-D. ACS Catal 2021; 11: 14008-14015
- 6f Kim RS, Kgoadi LO, Hayes JC. et al. J Am Chem Soc 2024; 146: 17606-17612
- 6g Zhang Y, Gu Y-Z, Lu K. et al. CCS Chem 2025; 7: 1067-1077
- 6h Xu S-S, Qiu H, Xie P-P. et al. CCS Chem 2025; 7: 245-255
- 7 Su Z-M, Zhu J, Poole DL. et al. J Am Chem Soc 2025; 147: 353-361
- 8a Gosmini C, Lasry S, Nédélec J-Y, Périchon J. Tetrahedron 1998; 54: 1289-1298
- 8b Gosmini C, Nédélec JY, Périchon J. Tetrahedron Lett 2000; 41: 5039-5042
- 8c Pipelier M, Thobie-Gautier C, Dubreuil D. J Org Chem 2007; 72: 5631-5636
- 8d Mirabi B, Marchese AD, Lautens M. ACS Catal 2021; 11: 12785-12793
- 9a Ma C, Guo J-F, Xu S-S, Mei T-S. Acc Chem Res 2025; 58: 399-414
- 9b Wang Y-Z, Sun B, Guo J-F. et al. Nat Commun 2025; 16: 1108
- 9c Wang Y-Z, Wang Z-H, Eshel IL. et al. Nat Commun 2023; 14: 2322
- 9d Wang Y-Z, Sun B, Zhu X-Y, Gu Y-C, Ma C, Mei T. J Am Chem Soc 2023; 145: 23910-23917
- 9e Sun B, Wang Z-H, Wang Y-Z, Gu Y-C, Ma C, Mei T-S. Sci Bull 2023; 68: 2033-2041
- 9f Liu D, Liu Z-R, Wang Z-H. et al. Nat Commun 2022; 13: 7318
- 9g Qiu H, Shuai B, Wang YZ. et al. J Am Chem Soc 2020; 142: 9872-9878
- 9h Jiao K-J, Li Z-M, Xu X-T. et al. Org Chem Front 2018; 5: 2244-2248
- 10a Su Z-M, Deng R, Stahl SS. Nat Chem 2024; 16: 2036-2043
- 10b
Du K-X,
Chen Y-F,
He Z-H.
et al.
CCS Chem 2025;
- 11 DeLano TJ, Reisman SE. ACS Catal 2019; 9: 6751-6754
- 12 Xu S-S, Guo J-F, Ma C, Fang P, Mei T-S. J Am Chem Soc 2025; 147: 36947-36955
- 13 Tang X, Tang Y, Peng J. et al. J AmChem Soc 2024; 146: 26639-26648
- 14 Rondelli M, Pasán J, Fernández I, Martín T. Chem-Eur J 2024; 30: e202400896
- 15 Amatore C, Azzabi M, Calas P, Jutand A, Lefrou C, Rollin Y. J Electroanal Chem 1990; 288: 45-63