Synlett
DOI: 10.1055/a-2803-0467
Synpacts

Cobalt-Catalyzed Electroreductive Cross-Coupling for the Synthesis of Atropisomeric 3-Arylindoles

Authors

  • Shi-Shuo Xu

    1   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (Ringgold ID: RIN58309)
  • Xin Chen

    1   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (Ringgold ID: RIN58309)
  • Ping Fang

    1   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (Ringgold ID: RIN58309)
  • Tian-Sheng Mei

    1   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (Ringgold ID: RIN58309)

Supported by: NSF of China 22101294,22361142834,22425111
Supported by: Strategic Priority Research Program of the Chinese Academy of Sciences XDA0540000, XDB0610000
Supported by: S&TCSM of Shanghai 21ZR1476500, 25ZR1401384
Funding Information This work was financially supported by NSF of China (22425111, 22361142834, and 22101294), National Key R&D Program of China (2021YFA1500100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA0540000, XDB0610000), and S&TCSM of Shanghai (21ZR1476500, 25ZR1401384).


Graphical Abstract

Abstract

The synthesis of atropisomeric 3-arylindoles via transition metal-catalyzed reductive cross-coupling remains challenging due to their intrinsically low rotational barriers and the comparable electronic characteristics of the two coupling partners. Herein, we present a cobalt-catalyzed enantioselective electroreductive cross-coupling between indole bromides and aryl iodides. This method enables efficient access to atropisomeric 3-arylindoles with high chemo- and enantioselectivities. Notably, it successfully addresses the challenges posed by indole substrates lacking electron-withdrawing groups at the 2-position.



Publication History

Received: 17 November 2025

Accepted after revision: 02 February 2026

Accepted Manuscript online:
05 February 2026

Article published online:
16 February 2026

© 2026. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

    • 1a Schmidt TA, Hutskalova V, Sparr C. Nat Rev Chem 2024; 8: 497-517
    • 1b Liu S-J, Zhao Q, Liu X-C. et al. Med Res Rev 2024; 44: 1971-2014
    • 1c Cheng JK, Xiang S-H, Li S, Ye L, Tan B. Chem Rev 2021; 121: 4805-4902
    • 1d Tajuddeen N, Feineis D, Ihmels H, Bringmann G. Acc Chem Res 2022; 55: 2370-2383
    • 1e Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem Soc Rev 2021; 50: 2968-2983
    • 1f Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem Rev 2011; 111: 563-639
    • 4a Zhang H-H, Wang C-S, Li C, Mei G-J, Li Y, Shi F. Angew Chem Int Ed 2017; 56: 116-121
    • 4b Qi L-W, Mao J-H, Zhang J, Tan B. Nat Chem 2018; 10: 58-64
    • 4c Lu S, Ong J-Y, Yang H. et al. J Am Chem Soc 2019; 141: 17062-17067
    • 4d Lu D-L, Chen Y-H, Xiang S-H, Yu P, Tan B, Li S. Org Lett 2019; 21: 6000-6004
    • 4e Jiang F, Chen K-W, Wu P, Zhang Y-C, Jiao Y, Shi F. Angew Chem Int Ed 2019; 58: 15104-15110
    • 4f Ding W-Y, Yu P, An Q-J. et al. Chem 2020; 6: 2046-2059
    • 4g Zhang H-H, Shi F. Acc Chem Res 2022; 55: 2562-2580
    • 4h Wu P, Yu L, Gao C-H. et al. Fundam Res 2023; 3: 237-248
    • 4i Liu YW, Chen YH, Cheng JK, Xiang SH, Tan B. Chem Synth 2023; 3: 11-18
    • 5a He C, Hou M, Zhu Z, Gu Z. ACS Catal 2017; 7: 5316-5320
    • 5b Wang C-S, Wei L, Fu C, Wang X-H, Wang C-J. Org Lett 2021; 23: 7401-7406
    • 5c Surgenor RR, Liu X, Keenlyside MJH, Myers W, Smith MD. Nat Chem 2023; 15: 357-365
    • 5d Nguyen NH, Seo S, Jang J, Kim H, Shin S. Org Lett 2024; 26: 7149-7154
    • 5e Ye J, Song Q, Pan D. et al. Adv Synth Catal 2024; 366: 1064-1069
  • 7 Su Z-M, Zhu J, Poole DL. et al. J Am Chem Soc 2025; 147: 353-361
    • 8a Gosmini C, Lasry S, Nédélec J-Y, Périchon J. Tetrahedron 1998; 54: 1289-1298
    • 8b Gosmini C, Nédélec JY, Périchon J. Tetrahedron Lett 2000; 41: 5039-5042
    • 8c Pipelier M, Thobie-Gautier C, Dubreuil D. J Org Chem 2007; 72: 5631-5636
    • 8d Mirabi B, Marchese AD, Lautens M. ACS Catal 2021; 11: 12785-12793
    • 9a Ma C, Guo J-F, Xu S-S, Mei T-S. Acc Chem Res 2025; 58: 399-414
    • 9b Wang Y-Z, Sun B, Guo J-F. et al. Nat Commun 2025; 16: 1108
    • 9c Wang Y-Z, Wang Z-H, Eshel IL. et al. Nat Commun 2023; 14: 2322
    • 9d Wang Y-Z, Sun B, Zhu X-Y, Gu Y-C, Ma C, Mei T. J Am Chem Soc 2023; 145: 23910-23917
    • 9e Sun B, Wang Z-H, Wang Y-Z, Gu Y-C, Ma C, Mei T-S. Sci Bull 2023; 68: 2033-2041
    • 9f Liu D, Liu Z-R, Wang Z-H. et al. Nat Commun 2022; 13: 7318
    • 9g Qiu H, Shuai B, Wang YZ. et al. J Am Chem Soc 2020; 142: 9872-9878
    • 9h Jiao K-J, Li Z-M, Xu X-T. et al. Org Chem Front 2018; 5: 2244-2248
    • 10a Su Z-M, Deng R, Stahl SS. Nat Chem 2024; 16: 2036-2043
    • 10b Du K-X, Chen Y-F, He Z-H. et al. CCS Chem 2025;
  • 11 DeLano TJ, Reisman SE. ACS Catal 2019; 9: 6751-6754
  • 12 Xu S-S, Guo J-F, Ma C, Fang P, Mei T-S. J Am Chem Soc 2025; 147: 36947-36955
  • 13 Tang X, Tang Y, Peng J. et al. J AmChem Soc 2024; 146: 26639-26648
  • 14 Rondelli M, Pasán J, Fernández I, Martín T. Chem-Eur J 2024; 30: e202400896
  • 15 Amatore C, Azzabi M, Calas P, Jutand A, Lefrou C, Rollin Y. J Electroanal Chem 1990; 288: 45-63