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Abstract Congenital platelet disorders are rare and targeted treatment is usually not possible.
Inherited platelet function disorders (iPFDs) can affect surface receptors and multiple
platelet responses such as defects of platelet granules, signal transduction, and
procoagulant activity. If iPFDs are also associated with a reduced platelet count
(thrombocytopenia), it is not uncommon to be misdiagnosed as immune thrombocy-
topenia. Because the bleeding tendency of the different platelet disorders is variable, a
correct diagnosis of the platelet defect based on phenotyping, function analysis, and
genotyping is essential, especially in the perioperative setting. In the case of a platelet
receptor deficiency, such as Bernard–Soulier syndrome or Glanzmann thrombasthenia,
not only the bleeding tendency but also the risk of isoimmunization after platelet
transfusions or pregnancy has to be considered. Platelet granule disorders are
commonly associated with either intrinsically quantitative or qualitative granule
defects due to impaired granulopoiesis, or granule release defects, which can also
affect additional signaling pathways. Functional platelet defects require expertise in
the clinical bleeding tendency in terms of the disorder when using antiplatelet agents
or other medications that affect platelet function. Platelet defects associated with
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Introduction

Platelets play a crucial role in primary hemostasis and in the
amplification of thrombin generation during secondary he-
mostasis. They are produced by megakaryocytes in the bone
marrow and lungs1 and circulate as small, granular, anu-
cleate cytoplasmic fragments. Under physiological condi-
tions, their concentration ranges between 150,000 and
450,000/µL in children and adults.When endothelial damage
occurs, subendothelial structures like collagen become ex-
posed, recruiting the plasmatic vonWillebrand factor (VWF).
Platelets adhere to these structures and form a primary
hemostatic plug, wherein platelet-to-platelet interaction is
achieved through cross-linking by fibrinogen and VWF.
Concurrent platelet activation is characterized by a change
in shape, exposure of anionic phospholipids, and secretion of
granule cargo. These mechanisms lead to the formation of a
dense clot pattern, providing a surface for the cell-based
coagulation cascade to proceed, allowing for fibrin formation
and further clot stabilization.2,3

Inherited platelet function disorders (iPFDs) can affect
platelet production, morphology, and function, with clinical
presentations varying in severity.4 Typical clinical manifes-
tations are mucocutaneous and gastrointestinal bleeding,
menorrhagia, epistaxis, easy bruising, and bleeding from the
oral cavity.5 The bleeding type and severity of functional
platelet defects can be assessed using the ISTH-BAT bleeding
score.6 In general, it is difficult to predict the bleeding
tendency from genetic findings only7 since most mutations
are private.8 The application of next-generation sequencing,
including whole exome sequencing, will be able to identify
rare defects and benefit the diagnostic procedures but na-
tional and international networks with bioinformatics will
be important to analyze the results.9

This review article summarizes the current knowledge on
iPFDs (►Supplementary Table S1 (available in the online
version only) with a focus on genetics, clinical presentation,
and laboratory platelet function analysis to support physi-
cians and laboratory staff in the differential diagnosis of
platelet function defects.

Glanzmann Thrombasthenia

Glanzmann thrombasthenia (GT) is a rare autosomal reces-
sive inherited platelet function disorder caused by deficiency
or dysfunction of the integrin αIIbβ3 (glycoprotein [GP]
IIb/IIIa).10 αIIbβ3 allows binding of fibrin(ogen) and VWF

upon platelet activation, which is essential for aggrega-
tion.11,12 Lack of functional αIIbβ3 in GT becomes clinically
relevant in homozygous or compound heterozygous states.
While there are also rare cases of acquired GT, due to
autoantibody formation, most cases of GT are inherited
and common, seeking medical attention for the first time
during childhood.13 Clinical presentations of GT range in
severity, and life-threatening or fatal bleedings can also
occur spontaneously and as early as during birth. Clinically
relevant bleeding is treated with antifibrinolytics, platelet
concentrates, and/or recombinant-activated factor VII
concentrates.12,13

As in other bleeding disorders, the bleeding history is the
starting point for the diagnostic workup, preferably using a
standardized bleeding assessment tool.14,15 However, GT
may also remain undiagnosed until invasive procedures
are performed.10,13,16

Platelets of patients with GT usually appear normal re-
garding phenotype and number in microscopic blood
smears, except for autosomal dominant ITBG3 variants
with thrombocytopenia, enlarged platelets, and anisocyto-
sis.12,17 The platelet function analyzer (PFA), as a tool for the
global assessment of primary hemostasis, is considered to
have a high sensitivity for severe iPFDs such as GT, but low
sensitivity for mild iPFDs. Similar findings have been
reported for whole-blood impedance aggregometry.18–20

In contrast, light transmission aggregometry (LTA) remains
the gold standard for platelet function analyses, revealing GT
by reduced aggregation pattern upon stimulation with all
agonists except ristocetin. The latter is because ristocetin-
mediated binding of VWF to platelet GPIbα directly results in
platelet clumping due tomajor passive agglutination and not
to fibrinogen-dependent aggregation. In addition, Glanz-
mann platelets present with disturbed clot retraction and
adhesion on fibrinogen due to loss or impaired αIIbβ3
integrin outside-in signaling. Nevertheless, in the case of a
typical aggregation pattern of Glanzmann’s disease (-
no/impaired response to all agonists except ristocetin), other
diseases (e.g., myeloproliferative disorders with activation
defects in αIIbβ3 or antiplatelet αIIbβ3 therapy with abcix-
imab, eptifibatide, tirofiban) and a preanalytical artifact (low
temperature during sample transport) should also be con-
sidered in the differential diagnosis. For instance, autoanti-
bodies or paraproteins that bind to the receptor can lead to
loss of functionwithout platelet destruction. However, this is
an acquired Glanzmann, which must be distinguished from
the congenital variant.21 Distinguishing between these two

hematological-oncological diseases require comprehensive information about the
patient including the clinical implication of the genetic testing. This review focuses
on genetics, clinical presentation, and laboratory platelet function analysis of iPFDs
with or without reduced platelet number. As platelet defects affecting the cytoskeleton
usually show thrombocytopenia, but less impaired or normal platelet functional
responses, they are not specifically addressed.
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forms involves several clinical and laboratory investigations.
Family history and onset of symptoms can help differentiate
between congenital and acquired disease. In addition, Glanz-
mann platelets present with disturbed adhesion on fibrino-
gen and clot retraction.

Flow cytometric analysis (FCA) of platelet GP expression
should be performed when GT is suspected. In FCA, the
binding of an antibody that recognizes the extracellular
domain of αIIbβ3 is notably reduced or missing. Further-
more, platelet activation analysis detecting the binding of an
antibody specific for activated αIIbβ3 (PAC-1) should be
applied.22 The advantages of FCA include lowsample volume,
feasibility even in pronounced thrombocytopenia, and the
ability to identify heterozygous GT carriers. However, this
requires a careful gating strategy and examination of first-
degree relatives should be included. It is essential to ac-
knowledge the importance of appropriate reference interval
validation of the method employed, especially to classify GT
subtypes based on residual expression (I: <5–10%; II: >5–
10%; III: normal expression of nonfunctional protein).13,23

However, the severity of bleeding in patients with GT varies
markedly. In addition to FCA, immunofluorescence micros-
copy can be applied. This involves treating fixed blood
smears with antibodies of corresponding specificity to
αIIbβ3 integrin or its subunits, then analyzing their binding
usingfluorochrome-conjugated secondary antibodies.24Mo-
lecular genetics of targeting mutations in the coding of
ITGA2B and ITGB3 genes should be performed to confirm
the inherited platelet disorder.10

Upon establishment of the diagnosis of GT, all patients
should be human leukocyte antigen (HLA)-typed and have a
baseline human platelet antibody (HPA) and human leucocyte
antigen antibody screen, as the risk of isoantibody formation
after platelet transfusions against the missing αIIbβ3 integrin
is high. This is of clinical importance especially in pregnant
patients, since anti-αIIbβ3 antibodies may cross the placenta
and cause fetal/neonatal thrombocytopenia.25,26

Bernard–Soulier Syndrome

In 1948, Jean Bernard and Jean-Pierre Soulier published the
first description of a patient with inherited thrombocytope-
nia, prolonged in vivo bleeding time, and enlarged plate-
lets.27 Bernard–Soulier syndrome (BSS) is a rare hereditary,
most likely underdiagnosed bleeding disorder with variable
macrothrombocytopenia, petechiae, epistaxis, gingival
bleeding, menorrhagia, rare gastrointestinal bleedings, and
severe bleedings associated with trauma or surgery.7,28,29

Almost 50% of the patients with BSS have beenmisdiagnosed
and treated as immune thrombocytopenia in the past.8

BSS patients may have quantitative and/or qualitative
defects of the platelet receptor GPIb/IX/V, which is composed
of four subunits: glycosylatedGPIbα is attached bya disulfide
bond to GPIbβ, and noncovalently associated with GPIX and
GPV.9,30,31 Each platelet expresses 20,000 to 25,000 copies of
GPIb/IX and �11,000 molecules of GPV.32

The cytoplasmic tail portion of GPIbα interactswith actin-
associated proteins, supporting the maintenance of the

platelet shape, size, and adhesive function. The interaction
of GPIbα with VWF mediates platelet adherence to the
vascular subendothelium, which can be investigated in ris-
tocetin-induced platelet agglutination (RIPA).33,34 Different
mutations in the GP1BA gene, encoding the GPIbα subunit or
in GP1BB (GPIbβ subunit) or in GP9 (GPIX), prevent or reduce
the surface expression of the whole GPIb/IX/V complex and
are typically inherited in an autosomal-recessive mode
(biallelic BSS). Few cases with single dominant mutations
mainly impair the function (monoallelic BSS).7GPV deficien-
cy does not cause BSS, but modulates thrombin-mediated
platelet activation and fibrin formation.35

The first step in laboratory testing includes the measure-
ment of the blood cell count ranging between 20 and
100�109/L in BSS patients.28 The mean platelet volume
(MPV) varies from 9.3 to 27 fL (mean 14.8 fL).8 Of note,
automated impedance-based measurement of the platelet
count does not recognize very large platelets and should be
verified by microscope technique. Examination of the
stained blood smear includes the assessment of platelet
size, and platelet morphology typically showing very large
or even giant platelets.7,28,29 Classical preparation of plate-
let-rich plasma (PRP) by centrifugation leads to the loss of
enlarged platelets. As for other platelet disorders combined
with dysfunction and reduced platelet count, the WHO
bleeding score does not always correlate with platelet count
in BSS.8

In the second step, platelet function assessment with the
RIPA assay and/or flow cytometry for the examination of
GPIb/X/V platelet surface expression are useful.36,37 Typical-
ly, RIPA is absent or reduced in BSS, while the responses to
adenosine-diphosphate (ADP), collagen, and arachidonic
acid in the LTA are normal if the platelet mass is sufficient
for LTA. Depending on the underlying mutation, the expres-
sion of this receptor is reduced.29,36 Importantly, RIPA cannot
be corrected by addition of normal plasma to exclude differ-
ential diagnosis of von Willebrand disease.7 In some cases,
RIPA assay in patients with Bolzano mutation may be not
sufficiently sensitive for diagnosis.28

Defects in prothrombin consumption in serum from
patients with BSS have been described. GPIbα carries several
binding sites for different coagulation factors, and GPIbα is
essential for thrombin generation on platelets (thrombin
burst).38

Immunofluorescence microscopy of blood smears, using
antibodies against specific proteins affected in different
hereditary platelet disorders including BSS, can be an alter-
native, requiring, like flow cytometry, only a small volume of
blood.24

The final step in laboratory testing includes molecular
diagnostics. Usually, BSS is characterized by autosomal-
recessive inheritance with mutations in GP1BA, GP1BB, or
GP9 genes, including missense (54%), frameshifts (38%), and
nonsense (8%) mutations; however, none has been described
for GPV.7,8,33 In a large cohort of 211 families with biallelic
BSS, 112 mutations in the GP1BA (28%), GP1BB (28%), or GP9
(44%) have been described, while 85% were homozygous and
13%were compoundheterozygous.8However,mutations can

Hämostaseologie © 2025. Thieme. All rights reserved.

Diagnosis of Platelet Function Defects Althaus et al.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



also be monoallelic (i.e., only one allele is affected with
autosomal dominant inheritance). The best-knownmutation
is the Bolzano variant (p.Ala172Val of GPIbα) with usually
only mild thrombocytopenia.39

Platelet-Type von Willebrand Disease

The platelet-type vonWillebrand disease (PT-VWD) is a rare,
autosomal-dominant bleeding disorder with dysfunctional
platelets.26 Bleeding becomes more severe in situations like
childbirth and surgery. Laboratory testing shows low VWF:
ristocetin cofactor and low or normal VWF:antigen and
characteristically an enhanced RIPA. This disease can be
identified by LTA, when a subthreshold concentration of
ristocetin (0.5mg/mL) does induce platelet agglutination.
Of note, in neonates VWF binding induced by 0.5mg/mL of
ristocetinmeasured by LTA or byflowcytometry is normal.40

Differentiating between von Willebrand type IIB and plate-
let-type VWD by plasma exchange experiments requires
experience and diagnostic options. Here, fresh platelets
and plasma from healthy volunteers are required to perform
cross-comparisons by incubation in the plasma of a healthy
donor with platelets from the patient and vice versa. In the
case of PT-VWD, a RIPA is normal when using platelets from
healthy volunteers and patient plasma, whereas when using
patient platelets, a pathologically increased agglutination is
observed when using a low concentration of ristocetin (e.g.,
0.5mg/mL). This makes it possible to differentiate whether
the platelets or the plasma is the cause of the phenotype.41,42

However, thrombocytopenia due to increased platelet bind-
ing to VWF does not fully explain the bleeding tendency. It
has recently been described that in this disease, a lack of
signaling due to themalfunction of theGPIb receptor can also
increase the bleeding tendency in these patients.26,43

Platelet Granule Defects

Platelets contain three types of granules that can be readily
distinguished by their content, structure, release, and func-
tion: (1) α-granules, (2) d-granules (dense bodies), and (3)
lysosomal granules.

Duringmegakaryopoiesis, a common immature precursor
of α- and d-granules is formed and the immature granules in
megakaryocytes are referred to “multivesicular bodies”
(MVB I and II). These structures are initially formed by
clathrin-dependent endosomes, but also by endocytosis
from the plasma membrane. Early MVB I contains only
internal vesicles; MVB II additionally has an electron-dense
matrix. Sorting into α- and d-granules occurs before finally
mature granules are formed.

α-Granule Defects
α-Granules are the most abundant ones with �50 to 80 per
platelet.44 They contain numerous proteins, including plate-
let-derived growth factor (PDGF), platelet factor 4 (PF4), or
VWF, most of which are synthesized in megakaryocytes,
while some, like fibrinogen or factor V, are taken up from
plasma. α-Granules are still modified in circulating platelets

due to a continuous shuttling between membrane receptors
and the MVB and to further differentiate into distinct α- and
d-granules.

Several transmembrane proteins are incorporated into
the α-granule membrane, including P-selectin (CD62P),
which is virtually absent from the plasma membrane of
resting platelets. CD62P is a well-established marker for
platelet activation in response to stimulation. It is also
expressed on Weibel-Palade bodies in endothelial cells,
where it can be exocytosed to the plasma membrane upon
endothelial cell activation. CD62P can be cleaved from the
cell surface by sheddases, resulting in a cleaved transmem-
brane protein and a soluble ectodomain (sCD62P), which can
be detected in plasma and whose expression level has been
assayed in distinct disease conditions, such as sickle cell
anemia.45 Triggering receptor expressed on myeloid cells
(TREM)-like transcript-1 (TLT-1) has been considered to be a
more sensitive marker for α-granule release with a compa-
rable specificity,46 but not yet been broadly established.

The most common inherited disorder affecting α-granule
number and content is the gray platelet syndrome (GPS;
OMIM #139090)47 which is associated with a mild to mod-
erate bleeding tendency, macrothrombocytopenia, and ele-
vated vitamin B12 levels. Bone marrow fibrosis and
splenomegaly may occur during disease progression.47,48

In May–Gruenwald–Giemsa-stained blood smears, platelets
appear larger and greyish rather than purple as dyes are not
incorporated into granules. GPS is caused by homozygous or
compound heterozygous mutations in NBEAL2 which enc-
odes neurobeachin-like 2, a protein that is essential for the
formation of α-granules and deficiency thus resulting in loss
of α-granules.49–51

In addition, NBEAL-2 is required for neutrophil- and
natural killer-cell function and pathogen defense52,53 and
recently Delage et al described a low CTA4 expression in
activated T cells from NBEEAL-2-deficient patients.

Certain mutations in the transcription factors GFI1B and
GATA1 also lead to gray platelets,54 as many genes are not
adequately expressed. The genes VPS33B and VIPAS39 are
involved in MVB and granule maturation and variants in
these genes cause the arthrogryposis–renal dysfunction–
cholestasis (ARC) syndrome (OMIM #208085).55 These dis-
orders share several platelet features with GPS, but are not
referred to as GPS.54

Blood smears are often a primary hint, but the same
staining pattern can be attributed to several gene defects.
This holds also true for immunofluorescence of platelet
proteins performed on blood smears, but these approaches
can clearly help with the diagnosis.24 Defects in α-granules
are best detected by flow cytometry using antibodies against
CD62P or TLT-1, which should be absent on resting platelets,
but becomes readily detectable after adding a high dose of a
strong agonist like thrombin. Transmission electron micros-
copy (TEM) is often considered the gold standard to verify a
lack of α-granules, but typically time- and labor-intensive
and restricted to specialized laboratories.

There is at the moment no curative approach for patients
with α-granule defects: GPS is associated with an increased,
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but overall mild bleeding risk that can be treated with
platelet transfusions, tranexamic acid, or desmopressin.5,47

Patients with ARC and GPS syndrome require detailed clini-
cal observations. Patients harboring variants in transcription
factors GATA1 should also be followedup carefully over time;
both transcription factors are associated with red blood cell
defects, and a transition into a pre-leukemic condition may
occur depending on the causative mutation.56

An altered composition of α-granules is found in the
Quebec platelet disorder (QPD), a disease with autosomal
dominant inheritance, in which a gain-of-function defect in
fibrinolysis leads to a more than 100-fold increase in platelet
stores of urokinase plasminogen activator. This leads to
increased plasmin-mediated degradation of α-granule
proteins.57

d-Granule Defects
Dense bodies (d-granules) contain ADP, adenosine triphos-
phate (ATP), serotonin, Ca2þ cations, pyrophosphate, and
polyphosphate and express lysosomal membrane proteins
(LAMP1/2; CD107a/b), which can be detected on the platelet
surface upon stimulation. Granulophysin (CD63), another
marker for lysosomes, is also expressed in d-granules and can
be used to detect the release of both granule types. d-
Granules appear often as “eyed” granules in TEM micro-
graphs, but are best visualized by whole-mount TEM where
they appear as electron-dense dots on the micrographs.

Upon platelet activation, small molecules are released
from the d-granules, which act as important autocrine
platelet agonists, such as ADP, ATP, and serotonin. Released
polyphosphates and Ca2þ cations essentially contribute to
the platelet-based amplification of thrombin generation
during the coagulation process. Disorders of platelet d-gran-
ule formation are characterized by quantitative or qualitative
defects manifested as isolated or syndromic forms.4,58 The
bleeding severity of d-storage pool disorders (d-SPDs) is
variable, ranging from mild to severe when assessed by the
ISTH-BAT bleeding score.6 However, a mild spontaneous
bleeding diathesis can be life-threatening after trauma or
surgery.

Congenital d-SPDs are typically caused by pathogenic
variants in genes either responsible for the biogenesis and
trafficking of lysosome-related organelles (melanosomes,
lysosomes) including platelet d-granules during late mega-
karyopoiesis, or encoding distinct transcription factors (e.g.,
GATA1, RUNX1, FLI1) essentially involved in early megakar-
yopoiesis. The syndromic d-SPDs, Hermansky-Pudlak syn-
drome (HPS), Chediak–Higashi syndrome (CHS), and
Griscelli’s syndrome (GS) with autosomal recessive inheri-
tance are predominantly recognized rather by clinical man-
ifestations. Currently, 11 different HPS subtypes are known
based on the mutated gene (ISTH TIER1 genes: HPS1, AP3B1
[HPS2], HPS3-HPS6, AP3D1, BLOC1S3, BLOC1S5, BLOC1S6,
DTNBP1). Prominent clinical associations of HPS are oculo-
cutaneous albinism, nystagmus, immunodeficiency (i.e.,
HPS-2), granulomatous colitis (i.e., HPS-1, HPS-4), hemopha-
gocytic lymphohistiocytosis (i.e., HPS-2), and pulmonary
fibrosis. Patients with CHS caused by pathogenic variants

in LYST present with partial albinism, immunodeficiency,
hemophagocytic lymphohistiocytosis, neurological defects,
and hepatosplenomegaly. For all these syndromes (HPS, CHS,
GS), platelet d-granules are absent or the number is strongly
reduced, despite normal platelet count. In comparison, GS is
caused by pathogenic variants in MYO5A, RAB27A, or MLPH
and patients present with normal or reduced platelet count
and partial albinism, silver hair, neurological defects, and
immunodeficiency. SLFN14 genemutation causes a combined
defect with mild thrombocytopenia, enlarged platelets, and
reduced ATP secretion. Patients show a disproportionately
high bleeding tendency compared with the rather mild
thrombocytopenia.59

For the laboratory diagnosis of quantitative d-SPD with
reduced or absent d-granules, the whole mount TEM repre-
sents the “gold standard” method.60 The sensitive and spe-
cific quantification of ADP, ATP (HPLC, luminescence), and
serotonin (HPLC, ELISA) in platelet lysates allows the evalua-
tion of the major d-granule cargo.61 However, these technol-
ogies and assays are not available in routine laboratories.
Alternatively, a combination of different platelet function
assays allows the characterization of intrinsic or secretory
platelet d-granule defects. LTA may indicate a d-SPD when
the second aggregation wave is missing, reduced, and/or
characterized by a clear disaggregation in response to the
weak agonists ADP and epinephrine or to the strong agonist
collagen in a dose-dependent manner. However, normal
aggregation responses especially with high agonist concen-
trations do not exclude a mild or moderate d-SPD.62 There-
fore, a combination of LTA with lumiaggregometry, flow
cytometry (d-granule and lysosome membrane marker
CD63, mepacrine assay), and immunofluorescence (CD63,
LAMP1, and LAMP-2) is recommended to prevent missing
and misdiagnosis of this platelet function disorder.63,64

Combined α-Granule and d-Granule Defects
Pathogenic variants in the transcription factor genes GATA1,
RUNX1, and FLI1 can also cause combined α-granule and d-
granule defects combined with thrombocytopenia with or
without enlarged platelets.65–67

Defects of Platelet Signaling Pathways

Inherited disorders of platelet receptors, namely, fibrinogen
receptor αIIbβ3 integrin deficiency/dysfunction (GT), von
Willebrand factor receptor GPIb–V–IX deficiency/dysfunction
(BSS, PT-VWD), as well as deficiencies of the collagen receptor
GPVI, ADP receptor P2Y12, and thromboxane A2 (TxA2) recep-
tor TPα, are well known to cause dysfunctional signal trans-
duction in platelets. In comparison, intrinsic defects of platelet
signaling affect specific or common receptor-mediated path-
ways, including TxA2-, guanosine-triphosphate (GTP)-binding
protein and αIIbβ3 integrin inside-out signaling.68,69 Defects
of the GPVI receptor are gaining increasing attention. The
receptor plays a significant role in thrombus formation and
growth. Especially the procoagulant activity of platelets is
triggered via GPVI.70 Alterations in GPVI signaling can be
manifold. For instance, the protooncogenic tyrosine-protein
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kinase SRC (SRC) plays a crucial role in the signaling byGPVI. SRC
is also involved in the signaling processes of the integrin and
GPIb–V–IX receptors onplatelets. Amutation in thePTPRJgene
is associatedwith absent CD148 and reduced SRC activation in
platelets. The PTPRJ gene encodes a receptor-like protein tyro-
sine phosphatase, known as PTPRJ or CD148, which is abun-
dantly expressed in platelets and megakaryocytes. Clinically,
the platelets of these patients have a reduced response to
convulxin via the GPVI receptor, are morphologically reduced
in number and size, and patients have a clear clinical tendency
to bleed.71 A mutation in the EPHB2 gene leads to reduced
crosstalk betweenGPVI andGprotein-coupled receptor signal-
ing. This results in reduced responsiveness of theGPVI receptor,
the consequences of which are not yet fully understood.72

The ADP receptor P2Y12 is predominantly expressed on
platelets and enables the amplification of platelet activation
leading to irreversible platelet aggregation.Disorders associat-
edwithP2Y12receptor includeconditions likebleedingdisorders
and certain types of thromboembolic diseases. The bleeding
tendency isvariableandoftenexacerbatedbycomedication. In
particular, bleeding during surgical interventions and trauma
has been described.73 TXA2 receptor defects are rare and not
easy to distinguish from cyclooxygenase inhibitor/aspirin
intake or cyclooxygenase defects. Here, the receptor itself is
affected. Patients with this defect show a complete lack of
response to thromboxane analogs such as U46619.

Although rare, defects in the common pathway of TxA2

generation are most frequent within the group of congenital
platelet signal transduction disorders. They are caused by
pathogenic variants in PLA2G4A, encoding the phospholipase
A2 (group IV); in PTGS1, encoding the cyclooxygenase-1 (COX-
1)/prostaglandin-endoperoxide synthase 1; or in TBXAS1,
encoding the TxA synthase 1 (Ghosal syndrome), with auto-
somal recessive or dominant inheritance. Usually, the platelet
count is normal, and patients present with mild to moderate
bleeding diathesis, which could be life-threatening under
hemostatic challenges. Similar to aspirin treatment, resulting
in irreversible inhibition of COX-1, platelets frompatientswith
deficient COX-1 or TxA2 synthase showed absent or reduced
arachidonic acid-mediated aggregation in the LTA (“aspirin-
likedefect”).62,74However,platelet cytosolicphospholipaseA2
(PLA2) deficiency cannot be identified by arachidonic acid-
induced platelet aggregation tests because PLA2 itself liberates
arachidonic acid through hydrolysis of membrane phospholi-
pids.75 Inherited and acquired platelet disorders of TxA2

synthesis can be accompanied by impaired aggregation in-
duced by weak agonists, such as ADP and epinephrine, and by
lowconcentrations of strong agonists, such as collagen and the
thrombin receptor PAR-1 agonist activating peptide TRAP-6,
but the inter-individual responses are variable. Platelet aggre-
gationwith theTxA2analogU46619 isnormalduetothedirect
activationof the TP receptor. The quantificationof serumTxB2,
a stable metabolite of TxA2, by liquid chromatography-mass-
spectrometry or ELISA-based assays is recommended as a
reference test, since it specifically detects all enzymatic dys-
functions involved in platelet TxA2 formation.76

Soluble platelet agonists such as ADP, TxA2, epinephrine,
serotonin (5-HT), and thrombin act as important platelet

feedback agonists via guanine nucleotide-binding protein-
coupled receptors. Upon receptor ligation, the α-subunit of
the heterotrimeric G proteins converts from the GDP- to the
active GTP-bound form, dissociates from the receptor-com-
plexed β- and γ-subunits, and transmits downstream signal-
ing.77 Congenital platelet function disorders with pathogenic
variants in genes of distinct subunits fromdifferent G protein
subfamilies have been described. Patients with defects of
platelet-activating G proteins frequently present with mild
to moderate bleeding symptoms, predominantly upon hemo-
static challenges. Platelet deficiency inGαq, encodedbyGNAQ,
impairs platelet activation via the thrombin receptors PAR-1
and PAR-4, ADP receptor P2Y1, TxA2 receptor TPα, and the
serotonin receptor 5HT2A and can be functionally analyzed by
LTA and flow cytometry in response to intermediate concen-
trations of PAR-1 and PAR-4-activating peptides and the TxA2
analog U46619. In contrast, normal platelet function is
expected in response to a high concentrationof aGPVI agonist,
Ca2þ ionophore, and phorbol ester, as these pathways are
insensitive to ADP- and TxA2-mediated signaling.62 However,
a similar dysfunctional platelet phenotype is expected when
the expression of phospholipase-β2 (PLCβ2), encoded by
PLCB2, is absent or reduced as PLCβ is a central downstream
target of Gq protein-coupled receptors.78Here, only the appli-
cation of Western analysis, GTPase activity assay, and phos-
pho-proteomics, in combination with genetic screening, can
specify the Gq protein-coupled receptor signaling defect.

Activating signaling via the Gi- and Gz-coupled receptors
P2Y12 for ADP and α2 adrenergic receptor for epinephrine,
respectively, interact with the inhibitory Gs-coupled IP
receptor pathway by regulating the cytoplasmic level of
the inhibitory second messenger cyclic adenosine-mono-
phosphate (cAMP). While signaling via Gαi/z-coupled recep-
tors leads to the inhibition of the adenylate cyclase and its
cAMP synthesis, prostacyclin-mediated activation of the
Gαs-coupled receptor IP results in adenylate cyclase activa-
tion, increase in cytoplasmic cAMP-level, activation to pro-
tein kinase A and platelet inhibition.79Gi-like platelet defects
are functionally detected by absent or reduced platelet
aggregation in response to epinephrine and no second
wave of aggregation in response to ADP. In comparison,
maximal aggregation responses induced by arachidonic
acid and high concentration of the PAR-1 agonist TRAP-6
and collagen are within the reference range.62 Although
dysfunction of the Gαi subunit is more frequent than that
of the αq subunit, cases of congenital Gi deficiency (i.e.,
pathogenic variants in GNAI1–3) are very rare.

Inherited platelet defects affecting αIIbβ3 integrin inside-
out signaling are characterized by GT-like platelet dysfunction
and bleeding symptoms.80 Leukocyte adhesion deficiency
syndrome type 3 (LAD-III) is an autosomal recessive disease
caused by pathogenic variants in FERMT3, encoding the focal
adhesionprotein kindlin-3. Kindlin-3 binds to the cytoplasmic
tails of the integrin β-subunit and cooperates with talin in
integrin activation. Infections, impaired wound healing, and
osteopetrosis are frequently observed in patientswith LAD-III.
Kindlin-3 deficiency does not affect integrin expression, but
agonist-induced activation of integrins in leukocytes and
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especially of the platelet αIIbβ3 integrin.81 Another GT-like
platelet disorder is associated with mutations in RASGRP2
encoding diacylglycerol-regulated guanine nucleotide ex-
change factor I (CalDAG-GEFI), a Ca2þ-dependent activator of
Rap-1, which is essentially involved in αIIbβ3 integrin inside-
out and outside-in signaling.82–84 Therefore, patients with a
CalDAG-GEFI defect showed reduced platelet spreading on
fibrinogen and impaired platelet aggregation in response to
weak agonists and lower concentrations of strong agonists
with the exception of protein kinase C (PKC)-stimulating
phorbol esters. Specialized assays for the measurement of
Rap-1 activation are established only in research laboratories.

Defects of Platelet Procoagulant Activity

Dysregulation of Ca2þ-dependent platelet functions primar-
ily leads to alterations of procoagulant activity and the
surface presentation of negatively charged phospholipids
such as phosphatidylserine (PS). Platelet PS exposure is

important for Ca2þ-dependent binding of the Gla-domain
containing coagulation factors (e.g., FX, FII of the final
prothrombinase complex) to enable platelet-dependent am-
plification of thrombin generation.85,86 Loss-of-function
variants in ANO6/TMEM16F encoding anoctamin-6, a trans-
membrane ion channel protein, scrambling Ca2þ-dependent
phospholipids from the inner to the outer leaflet of the cell
membrane, cause the very rare autosomal recessive Scott
syndrome. Scott patients have a normal platelet count,
morphology, and aggregation responses, but platelets fail
to expose PS and subsequently to generate thrombin, fibrin,
and extracellular vesicles. These dysfunctional platelets do
not promote the stabilization of the thrombus and therefore,
Scott patients present with moderate to severe bleeding
diathesis during and after surgery.87,88 A bleeding tendency
can also be associatedwith spontaneously enhanced platelet
PS exposure, caused by inherited defects of Ca2þ-release-
activated Ca2þ channels as observed for the rare Stormork-
en’s syndrome, which is also linked to immune

Table 1 Overview of some medications altering platelet function, modified after Scharf91

Substance class Drugs Suspected mechanism

NSAIDs Diclofenac, ibuprofen,
indomethacin, naproxen

Reversible COX-1-inhibition

Beta-lactam antibiotics Ampicillin, penicillin G, carbeni-
cillin, piperacillin

Platelet receptor a/o VWF receptor interaction

Cephalosporins Cefotaxime, cefoperazone,
cephalothin

platelet membrane constituents interaction

Other antibiotics nitrofurantoin, miconazole Inhibition of platelet cox-1

PDE inhibitors Sildenafil, caffeine, theophylline,
aminophylline

Inhibition of PDE5; activation defect of integrin αIIbβ3

Nitrates Nitroprusside, nitroglycerin, iso-
sorbide dinitrate

Nitric oxide increases with the increase in platelet
cAMP/cGMP

Beta-adrenergic
receptor blockers

Propranolol, nebivolol, pindolol Independent of β-adrenoreceptor blockade

Calcium channel
blockers

Verapamil, nifedipine, diltiazem Inhibition of epinephrine to α2-adrenergic receptors
and of platelet response to TXA2 and serotonin

Angiotensin-converting
enzyme inhibitors

Ramipril, captopril, enalapril,
lisinopril

Downregulation of αIIbβ3?
NO-mediated drug effects

Angiotensin receptor
blockers

Valsartan, losartan, olmesartan Downregulation of αIIbβ3
Interference with TXA2 receptor

Antiarrhythmic drugs Quinidine Blockade of α2-adrenergic receptors

HMG-CoA inhibitors
(statins)

Atorvastatin, cerivastatin, flu-
vastatin, lovastatin, pitavastatin,
pravastatin, rosuvastatin,
simvastatin

Changes in lipid composition of the platelet plasma
membrane; inhibition of protein prenylation with
subsequent inhibition of GTP-binding proteins

Plasma expanders Dextrans, hydroxyethyl starch Interaction with platelet membrane constituents

Tricyclic antidepressants Imipramine, amitriptyline,
nortriptyline

Unclear

Phenothiazines Chlorpromazine, promethazine,
trifluoperazine

Inhibition of calmodulin-dependent pathways

Selective serotonin
reuptake inhibitors

Fluoxetine, paroxetine,
sertraline

Multifactorial mechanisms suggested

Abbreviations: cAMP, cyclic adenosine-monophosphate; cGMP, cyclic guanosine-monophosphate; COX-1, cyclooxygenase-1; GTP, guanosine-
triphosphate; NSAIDs, nonsteroidal anti-inflammatory drugs; PDE5, phosphodiesterase type 5; TXA2, thromboxane A2.
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deficiencies.89 Autosomal dominant gain-of-function var-
iants in sensor stromal interaction molecule 1 (STIM1),
encoding the Ca2þ STIM1 within the dense tubular system,
or in ORAI1, encoding Orai1 within the plasma membrane,
cause impaired store-operated Ca2þ entry accompanied by
elevated cytosolic Ca2þ levels and preactivated platelets in
vivo. Thus, patients with Stormorken’s syndrome showed
moderate thrombocytopenia associated with increased bas-
al platelet surface expression of PS and P-selectin but
reduced agonist-induced αIIbβ3 integrin activation capaci-
ty, assessed by flow cytometry, and impaired thrombus
formation under flow in a multiparameter-based flow
chamber assay.90 Flow cytometric detection of fluoro-
chrome-
conjugated annexin-V binding to platelets stimulated by
strong agonists such as thrombin, thrombin plus a GPVI
agonist (COAT, coated platelets), and Ca2þ ionophore in the
presence of Ca2þ is recommended to analyze platelet PS
translocation.85 Semiautomated thrombin generation
assays in PRP provide functional readouts for altered plate-
let coagulation capacity.

Acquired Platelet Defects

Patients can present with acquired platelet defects due to
external factors or conditions that develop during a person’s
lifetime.

Medications and Nutritional Deficiencies
Besides platelet function inhibitors, there are a considerable
number of drugs that can affect platelet function, as outlined
in►Table 1.91Among themost frequently encountered types
are nonsteroidal anti-inflammatory drugs, antihypertensive
drugs, antibiotics, and psychotropic medications. Further-
more, certain diets, herbs, alcohol, and nutritional supple-
ments or fasting itself have been shown or are suspected to
impair platelet function and laboratory tests (►Table 2).92

Certain nutritional deficiencies like vitamin B12 deficiency
have also been shown to affect platelet count and
function.93,94

Medical Conditions
In uremic patients, platelets have been shown to have similar
defects as a d-SPD (reduced ADP and serotonin content in
platelet granule; reduced d-granule; impairedATP release).95

Hematologic diseases such as myelodysplastic syndrome,
myeloproliferative neoplasms (e.g., essential thrombocythe-
mia), or acute leukemia are associated with acquired d-SPD
and can inherently lead to a decreased platelet function.96

Moreover, autoantibodies against platelet receptors result
in acquired forms of Glanzmann’s disease or delta storage
pool diseasewhich should be especially considered in elderly
patients with new bleeding symptoms. Apart from bleeding
control, the therapy consists of immunosuppression.97

Platelet aggregation has been shown to be impaired in
patients with severe sepsis and is associated with increased
mortality.98 d-SPD can secondarily occur due to partial or
complete granule exocytosis of activated platelets in throm-

boinflammatory states such as acute ischemic stroke99 and
severe COVID-19.100

Platelet Dysfunction Ex Vivo Due to Platelet
Pathological Platelet Activation In Vivo
Certain conditions can lead to a prolonged activation of
platelets in vivo and consecutively to a release of platelet
granules (also called “exhausted platelet syndrome”). Rea-
sons include prolonged bleeding situations inwhichplatelets
are constantly activated and consumed.101 Limited adhesion
and activation of the platelets as well as limited maximum
aggregation are described.102 This is also true for activation
through interaction with nonphysiological surfaces such as
extracorporeal devices, especially systems with high blood
flow rates such as ventricular assist devices, extracorporeal
membrane oxygenation, and cardiopulmonary bypass lead-
ing to impaired platelet granule release ex vivo.103–106

Conclusion

iPFDs are a heterogeneous group of rare bleeding diseases in
terms of frequency, bleeding severity, platelet dysfunction,
and platelet count/volume. They are caused by different and
multiple gene defects, which result in altered megakaryo-
poiesis, platelet production, and platelet function. If a re-
duced platelet count does not explain the bleeding
phenotype, a combined iPFD should be considered. Although
iPFDs are rare, their prevalence is underestimated due to a
limited diagnostic potential and challenging platelet func-
tion tests. The complex laboratory diagnosis is usually pos-
sible only in specialized laboratories. In case of a positive
family history, platelet dysfunction should be considered
after the exclusion of a plasmatic coagulation disorder.

Table 2 Overview of some foods and diets altering platelet
function, modified after McEwen92

- Berries (especially raspberry extract)

- Coffee and caffeine

- Cocoa and dark chocolate

- Energy drink

- Garlic

- Ginger

- Kiwi fruit

- Omega-3 polyunsaturated fatty acids

- Onion

- Purple grape juice

- Red wine

- Tomato

- Turmeric/Curcumin

- Vegetarian diet

- White wine

- Bromelain

- Ginkgo biloba extract
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However, in some cases, iPFDs are also associated with VWD
or other coagulation factor disorders. Especially the diagno-
sis of inherited platelet function defects with mild to mod-
erate bleeding diathesis, determined by a standardized
bleeding assessment tool, requires a combination of platelet
phenotyping, different platelet function assays, and geno-
typing. Therefore, a specific diagnosis of iPFDs is not only
essential for preventive bleeding treatment and advice of
affected familymembers but also for the therapy of bleeding.
Despite the upcoming automation of classical platelet func-
tion tests to improve standardization, the establishment of
additional specialized platelet function assays in combina-
tion with whole genome sequencing will help identify and
phenotype new iPFDs, so far classified as a bleeding disorder
of unknown cause.
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