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Abstract Background Oral anticoagulation (OAC) following catheter ablation (CA) of non-
valvular atrial fibrillation (NVAF) is essential for the prevention of thrombosis events.
Inappropriate application of OACs does not benefit stroke prevention but may be
associated with a higher risk of bleeding. Therefore, this study aims to develop clinical
data-driven machine learning (ML) methods to predict the risk of thrombosis and
bleeding to establish more precise anticoagulation strategies for patients with NVAF.
Methods Patients with NVAF who underwent CA therapy were enrolled from
Southwest Hospital from 2015 to 2023. This study compared eight ML algorithms to
evaluate the predictive power for both thrombosis and bleeding. Model interpretations
were recognized by feature importance and SHapley Additive exPlanations methods.
With potential essential risk factors, simplified ML models were proposed to improve
the feasibility of the tool.
Results A total of 1,055 participants were recruited, including 105 patients with
thrombosis and 252 patients with bleeding. The models based on XGBoost achieved
the best performance with accuracies of 0.740 and 0.781 for thrombosis and bleeding,
respectively. Age, BNP, and the duration of heparin are closely related to the high risk of
thrombosis, whereas the anticoagulation strategy, BNP, and lipids play a crucial role in
the occurrence of bleeding. The optimizedmodels enrolling crucial risk factors, RF-T for
thrombosis and Xw-B for bleeding, achieved the best recalls of 0.774 and 0.780,
respectively.
Conclusion The optimizedmodels will have a great application potential in predicting
thrombosis and bleeding among patients with NVAF and will form the basis for future
score scales.
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Introduction

Perioperative and postoperative thrombosis-related adverse
events (AEs; thrombosis) are major complications of percu-
taneous catheter ablation (CA) for nonvalvular atrial fibrilla-
tion (NVAF).1,2 Oral anticoagulant (OAC) therapy is widely
used to reduce the risk of thrombosis but at the expense of
increasing the risk of bleeding.3,4 Therefore, assessing the
risks and benefits of postablation OAC therapy in NVAF is
necessary to develop a rational and effective anticoagulation
strategy that can contribute towards averting AEs.

CA is a recommended treatment in restoring sinus rhythm
in patients with symptomatic drug-refractory NVAF, and
several randomized controlled trials have shown that CA is
superior to antiarrhythmic drugs in reducing the recurrence
and burden of atrial fibrillation (AF).5–7 Nevertheless, CA
therapy is associated with perioperative bleeding and stroke
in 1.9 and 0.2%, vascular complications in 2 to 4%, and
asymptomatic cerebral embolism in up to 15%.8,9 Local
endothelial dysfunction during the procedure is generally
considered to be the cause of platelet (PLT) activation, and
damaged cells release thrombogenic components, leading to
an increased risk of thrombosis.10 The dislodgement of
thrombosis in the left atrial appendage (LAA), hypercoagu-
lable state due to prolonged bed rest, and recurrence of AF
also increase the risk of embolism.11

There is a plethora of scores incorporating different risk
factors to assess the risk of stroke in patients with NVAF,
including theCHADS2 score,CHA2DS2-VAScscore,ATRIA score,
and ABC score.12–14 The CHA2DS2-VASc scoring stands out as

the most widely employed stroke assessment tool in clinical
practice, owing to its inherent simplicity andpragmatic utility.
Nevertheless, both the CHADS2 score andCHA2DS2-VASc score
encounter challenges when it comes to predicting vascular
events.15 Simultaneously, they aremore likely to overestimate
the risk of thrombosis due to the inclusion of comorbidities.
The HAS-BLED score, which takes into account factors such as
hypertension, abnormal liver/renal function, stroke, bleeding,
unstable international normalized ratio, older age, anddrug or
alcohol abuse, is widely used to assess the risk of major
bleeding.16TheHAS-BLEDscorewasmore suitable for patients
taking warfarin, but less suitable for patients taking non-
vitamin antagonist OACs because of the irregular monitoring
of coagulation function. Moreover, they failed to consider
various novel influencing factors and the analytical methods
used that do not adequately reflect the significance of predic-
tive indicators. Furthermore, the influences of CA and OAC
were not taken into account,making it difficult to evaluate the
efficiency of treatment strategies in NVAF patients with CA
therapy. With the advancement of artificial intelligence tech-
nologyand theemergenceofnovelbiomarkers associatedwith
NVAF, a novel prediction model is established by integrating
numerous innovative factors to assess the risk of thrombosis
and bleeding, which will provide precise support for the
development of enhanced anticoagulation strategies.

In this study, we first aimed to develop accurate predic-
tion models to detect some potential influential risk factors
associated with thrombosis and bleeding with high confi-
dence. To achieve this, eight machine learning (ML) algo-
rithms based on 76 variables were evaluated to build reliable
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classification models. The second aim was to recognize and
rank all potential influential risk factors for thrombosis and
bleeding by the feature importance and SHapley Additive
exPlanations (SHAP) methods. With important predictors,
simplified ML models were proposed to improve the feasi-
bility of the tool. At the same time, the associations and
differences between thrombosis and bleeding were com-
pared . Finally, some strategies were proposed to avoid the
risk of thrombosis and bleeding for patients with NVAF.

Materials and Methods

Proposed Methodology
This study proposed an explainable ML-based integrating
model for predicting NVAF patients with the risk of throm-
bosis and bleeding. To achieve this, we performed the
following steps: first, the dataset was obtained, prepro-
cessed, subsampled, and randomly divided into a training
set (80%) and a testing set (20%). Second, all features were
used to constructmodels by the eightML algorithms, and the
performance was evaluated by accuracy, specificity, recall,
and area under the curve (AUC) on the testing set. Third, the
first two algorithms with the best performance are selected
for further feature selection. Fourth, SHAP analysis was
employed to identify predictors. Finally, based on the feature
importance and SHAP value ranking, an optimized model
with variable weights was constructed by score assignment.

Study Population and Dataset Preparation
In this study, patients with NVAF used to construct ML
models were collected between January 2015 and Janu-
ary 2023 in Southwest Hospital (the First Affiliated Hospital
of Army Medical University). The inclusion criteria were as
follows: (1) patients who were discharged with a primary
diagnosis of NVAF, (2) patients who underwent CA therapy,
and (3) patients who were followed up for at least 6 months
after ablation. The exclusion criteria were as follows: (1)
patients with moderate to severe mitral stenosis with AF, (2)
patients with AF after mechanical valve replacement (for
aortic and mitral valve stenosis), (3) patients who failed to
attend follow-up appointments after CA or within 6 months
following surgery were excluded from the study. As a retro-
spective analysis, there were some missing values for some
information. Two strategies were employed to handle miss-
ing values in characteristics. First, the variables are imputed
with the most recent admission index retrieved from the
electronic medical record system. Then, if the proportion of
missing values exceeds 5%, that particular sample was ex-
cluded from further analysis, and the remaining missing
values in the variables were imputed using themedian value.
Thrombosis events were defined as the occurrence of throm-
bosis in LAA detected by transesophageal ultrasound, pul-
monary embolism, transient ischemic attack, and stroke
after CA procedure. Bleeding events include both major
and minor bleeding events, including hematemesis, intra-
cranial hemorrhage, hematochezia, hematuria, gingival and
nasal bleeding, subcutaneous ecchymosis, and hematoma.
After processing, 1,055 patients with NVAF undergoing CA

therapy were retained, which separately contained 105 and
252 data with thrombosis and bleeding, respectively. Ethical
approval [(B)KY2023076] was granted by the Ethics Com-
mittee of the First Affiliated Hospital of Army Medical
University prior to the commencement of this study, and
the requirement for informed consent was removed for a
retrospective observational study.

Variable Selection and Preprocessing
Four different types of variables based on previous literature
and preliminary findings were used to construct multiple
classification models: (1) 20 baseline information compo-
nents including demographic information for age, sex, and
weight; lifestyle factors for smoking, drinking, and past
medical history; indicators related to surgical procedures
including days of hospitalization, operation duration, intra-
operative active coagulation time, and other baseline relating
indicators; (2) 31 medication-related factors including pre-
operative utilization of OAC (type, dosage, preoperative
interruption), combination therapies (nonsteroidal anti-in-
flammatory drugs [NSAIDs], statins, P-glycoprotein inhibi-
tors, proton pump inhibitors, beta blockers), intraoperative
administration of heparin, postoperative usage of OAC, and
combination therapies (same as preoperative); (3) 24 bio-
marker information components including kidney functions,
hepatic functions, complete blood count, inflammation,
coagulation function, and myocardial function indicators;
(4) 5 left atrium–related indictors including width, depth of
LAA, left atrium diameter (LAD), left ventricular shortening
fraction and ejection fraction were collected to develop and
interpret models. All data except for medication information
were collected throughmedical data retrieval and application
platforms, whilemedication-related informationwas collect-
ed by manual review of the medical records. For these
features, two pretreatments were performed to delete
some uninformative features before further selection: (1)
remove features with a variance of 0 or close to 0; (2)
calculate the linear correlation of all variables with a corre-
lation threshold of 0.95. Herein, 76 variables were used to
construct classification models with inflammatory indica-
tors and serum cystatin C excluded.

Thebaseline variableswere presented asmean� standard
deviation for normal continuous variables and count (per-
centage) for categorical variables. Nonnormally continuous
variables were presented as median (interquartile range). An
unpaired t-test was used to compare the differences between
groups for normally continuous variables, and the Mann–
Whitney U test was used to analyze differences between
nonnormally distributed continuous variables. Pearson’s chi-
squared test or Fisher’s exact test was executed to examine
the association between categorical predictors and AEs. A
two-sided p-value <0.05 was considered significant.

Data Split, Model Development, and Process
As the unbalanced distribution of positive and negative sets,
subsampling techniques were used to balance the predic-
tions of positive and negative sets.17 For the subsampling
strategy, randomly selecting samples from the negative set
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that are identical to the positive set and repeating it 50 times
will yield reliable predictions. This approach aims to deal
with the data imbalance to achieve high recall and reason-
able precision for maintaining professional standards. The
dataset was divided with 80% for the training set and 20% for
the test set using randomly stratified sampling. Similarly, the
data splitting process was iterated 50 times to ensure the
utilization of all available data for modeling.

Eight popular ML algorithms were used to develop the
classification models, including Random Forest (RF),18 light
gradient boosting machine (LGBM), Gradient boosting deci-
sion tree (GBT),19,20 eXtremeGradient Boosting (XGBoost),21

Naïve Bayes (NB), logistic regression (LR),22 neural network
(NN), and deep neural network (DNN).23RF, GBT, NN, NB, and
XGBoost were implemented in the KNIME analytics platform
(KNIME version 5.1),24 and LR, LGBM, and DNN were imple-
mented in the Keras package of Python (version 3.7). The
specific parameters of the model are shown in
►Supplementary Table S1 (available in the online version).

Performance Evaluation and Model Explainability
In this study, the performance of the classification models
was evaluated by the following statistical parameters: accu-
racy (ACC) and AUC. In addition, the recall values were
calculated to assess the recovery rate of positive samples,
namely, the probability of correctly predicting the occur-
rence of AE. Feature importance was evaluated by the best-
performing model to interpret the importance of different
variables. To further provide consistent and locally accurate
attribution values for each variable, the SHAP method was
used to explain how feature influences the overall impor-
tance of models.25 The absolute SHAP value represents the
global contribution of the prediction by summing up all
SHAP values. Predictors with a positive SHAP score help
predict thrombosis or bleeding patients in the model, while
predictions with a negative SHAP score help predict non-AE
patients.

Results

Baseline Characteristics
Of 2,146 participantswith NVAF, the incidence of thrombosis
was 8.81% (189 out of 2,146) and the incidence of bleeding
was 13.89% (298 out of 2,146). Due to data preprocessing
principles described above, the data for the two groups were
not identical. For the thrombosis group, the positive set
contained 105 data points and the negative set contained
942 data points. For the bleeding group, the positive set
contained 252 data points and the negative set contained 803
data points. The baseline characteristics of the participants
are shown in ►Table 1 and the detailed distributions are
shown in ►Supplementary Table S2 (available in the online
version). The age, B-type natriuretic peptide (BNP) level,
heparin dose, and length of stay in the AE group were
statistically different from those in the non-AE group shown
in ►Supplementary Fig. S1 (available in the online version).
These results indicated the considerable potential of demo-
graphic to distinguish AE in the population with NVAF.

Comparison of the Performances of ML Methods on
Prediction of Thrombosis and Bleeding Following CA
for Patients with NVAF
The performance of multiple ML methods including RF,
XGBoost, GBT, LightGBM, NB, LR, NN, and DNN is shown
in ►Table 2 and ►Supplementary Fig. S2 (available in the
online version). Both the XGBoost and RF models achieved
better performance in respect of recalls at 0.841 and 0.777,
and AUC scores at 0.854 and 0.795 for the predictions of
thrombosis. Based on the average ACC values, although the
NB model has the highest overall accuracy and performed
well in predicting nonthrombosis samples, it actually
achieved high accuracy in prediction at the expense of the
recovery of a positive set. For the predictions of bleeding, the
overall predictions were remarkably similar to the model
results of thrombosis. Furthermore, the accuracies fall short
compared to that of thrombosis. For instance, the recall for
thrombosis predicted by the RF algorithm stands at 0.777,
while the recall for bleeding was only 0.642. Tomaximize the
identification of high risk of thrombosis and bleeding, the
XGBoost and RF algorithms were selected for further feature
selection and construction of optimized models.

Feature Importance for Predicting Thrombosis and
Bleeding
To acquire more accurate and concise features, both RF and
XGB algorithms have been chosen to conduct feature signifi-
cance analysis for feature selection as shown in ►Fig. 1. The
higher the value of feature importance, the more crucial the
feature in ML models. Regarding the importance of features
in the prediction of thrombosis by two ML algorithms, the
top 10 features showed a remarkable lack of consistency,
with the exception being the time of intraoperative heparin
application (T4), which demonstrated a robust feature for
thrombosis. In predicting bleeding, the application of OAC is
the most significant feature in both algorithms. The anti-
coagulation strategy, sex, BNP, total cholesterol (Tch), and
triglyceride (TG) level are significant contributors to both
thrombosis and bleeding. Aside from this, beta blocker,
NSAID, chronic myocardial ischemia syndrome, and age
also play a critical role for thrombosis, while preoperative
co-medication, diabetes mellitus, LAD, PLT, creatinine, and
BNP level also significantly contribute to the prediction of
bleedings.

The feature significance obtained by different algorithms
varies significantly, and we further elaborated the influence
of various features using the SHAP XGBoost-based method
shown in ►Fig. 2. The higher the SHAP absolute value of a
variable, the larger the contribution to themodel. The results
in ►Fig. 2 show that age, the duration of OAC after discharge
(T6), and BNP level are associated with a higher risk of
thrombosis, while type and dosage of OAC and alanine
transaminase (ALT) exhibited a stronger correlation with
high-risk bleeding. The SHAP values of the top 20 indicators
for each sample are represented by a color gradient, with
lighter shades of golden yellow indicating higher SHAP
values and darker shades of blue-purple representing lower
SHAP values. A threshold was set at a SHAP value of 0, with

Thrombosis and Haemostasis © 2024. The Author(s).

Harnessing Risk Assessment for Thrombosis and Bleeding Zhao et al.



Table 1 Statistical summary of the clinical variables in the AE group and non-AE group

Categories Variables Thrombosis (105) Nonthrombosis (942) p Bleeding (252) Nonbleeding (803) p

Demographic
information

Age, y, mean� SD 65.81� 10.52 60�11.64 <0.001a 62.69�11.10 60.36� 11.73 0.006a

Gender, male, n (%) 59 (56.19) 512 (54.35) 0.720b 121 (48.13) 481 (56.39) 0.018b

Weight, kg� 64.23� 11.24 64.79�11.10 0.623a 64 (56–70) 65 (56–71) 0.350c

BMI, kg/m2, mean� SD 24.46� 3.20 24.51�3.37 0.873a 24.58�3.19 24.47� 3.40 0.640a

Smoking, n (%) 38 (36.19) 310 (32.91) 0.009b 72 (28.57) 278 (34.62) 0.070b

Drinking, n (%) 42 (40.00) 292 (31.0) 0.060b 63 (25.00) 274 (34.12) 0.007b

Medical history Surgical history, n (%) 47 (44.76) 332 (35.24) 0.054b 110 (43.65) 274 (34.12) 0.006b

DM, n (%) 19 (18.10) 128 (13.59) 0.207b 45 (17.86) 103 (12.83) 0.045b

Hypertension, n (%) 50 (47.62) 424 (45.01) 0.108c 139 (55.16) 346 (43.09) 0.001c

Hyperlipidemia, n (%) 23 (21.90) 200 (21.23) 0.873b 44 (17.46) 181 (22.54) 0.086b

AS, n (%) 77 (73.33) 594 (63.06) 0.037b 167 (66.27) 509 (63.39) 0.405b

CIS, n (%) 18 (17.14) 56 (5.94) <0.001b 22 (8.73) 52 (6.48) 0.221b

HF, n (%) 32 (30.48) 220 (23.35) 0.076c 70 (27.78) 183 (22.79) 0.157c

AF type PeAF, n (%) 62 (59.05) 646 (68.58) 0.141b 167 (66.27) 546 (68.00) 0.857b

First episode AF, n (%) 38 (36.19) 261 (27.71) 74 (29.37) 226 (28.14)

Left cardiac
structure and
function

LAA-W, mm, mean� SD 16.98� 2.70 16.64�2.31 0.154a 16.75�2.39 16.64� 2.34 0.529a

LAA-D, mm, mean� SD 25.11� 3.92 24.99�3.53 0.734a 25.14�3.87 24.95� 3.47 0.460a

LAD, mm, mean� SD 39.63� 5.05 38.09�5.66 0.008a 38.91�5.47 38.05� 5.65 0.035a

EF, mean� SD 60.40� 8.47 60.83�7.62 0.589a 60.49�7.03 60.90� 7.88 0.458a

FS, mean� SD 32.47� 5.72 32.99�5.67 0.368a 32.83�6.12 32.99� 5.51 0.711a

Laboratory test GLU, mmol/L, mean� SD 5.66�1.42 5.52� 1.62 0.399a 5.56� 1.32 5.52�1.67 0.795a

PLT, 109/L, mean� SD 185.34�63.147 189.49�58.05 0.492a 181.81�58.17 191.33�58.32 0.024a

UA, μmol/L, mean� SD 371.20�96.12 354.20�105.47 0.114a 358.51�106.37 355.03�104.14 0.645a

Alb, g/L, mean� SD 38.91� 3.67 39.47�3.41 0.112a 39.08�3.39 39.51� 3.47 0.087a

ALT, IU/L� 20.4 (13.3–30.6) 19.8 (14.2–28.8) 0.996c 23.75�18.53 25.70� 21.58 0.197a

AST, IU/L� 23.1 (19.3–29.1) 22.4 (18.7–27.4) 0.233c 25.37�14.00 25.70� 13.66 0.733a

TBA, μmol/L� 3.6 (2.6–6.8) 4.3 (2.6–7.1) 0.389c 5.86� 6.14 6.06�7.88 0.709a

Creatinine, μmol/L� 77.72� 18.60 75.00�36.02 0.445a 70.0 (61.7–81.5) 72.1 (61.2–84.2) 0.374c

PT-INR� 1.05�0.29 1.04� 0.69 0.860a 0.96 (0.91–1.04) 0.94 (0.89–1.01) 0.002c

Fib, g/L� 2.55 (2.07–3.10) 2.44 (2.12–2.88) 0.126c 2.59� 0.76 2.57�0.69 0.674a

LDL_C, mmol/L� 2.69 (2.07–3.24) 2.70 (2.18–3.18) 0.846c 2.68� 0.77 2.72�0.74 0.425a

HDL_C, mmol/L� 1.18�0.33 1.17� 0.30 0.750a 1.12 (0.98–1.28) 1.13 (0.97–1.34) 0.363c

TG, mmol/L, mean� SD 1.48�1.20 1.59� 1.12 0.377a 1.50� 0.99 1.60�1.17 0.233a

Tch, mmol/L� 4.15 (3.54–5.04) 4.34 (3.63–5.03) 0.856c 4.27� 1.02 4.39�1.02 0.090a

BNP, pg/mL, median (IQR) 169 (83–280) 117 (35–169) <0.001c 154 (59–176) 116 (34–169) 0.002c

PCT, ng/mL, median (IQR) 0.22 (0.20–0.29) 0.22 (0.19–0.27) 0.501c 0.23 (0.19–0.30) 0.22 (0.19–0.28) 0.065c

CA Length of stay, day� 9 (7–11) 8 (6–10) 0.025a 9.1�3.3 8.5� 3.4 0.028a

Heparin dose, IU, mean� SD 6,597�1,751 7,238� 1,899 <0.001a 6,626� 1,871 7,341�1,868 <0.001a

T4, day� 2 (1–4) 1 (1–3) 0.003c 2.42� 2.01 2.04�1.94 0.008a

T3, h� 3.26�0.85 3.24� 0.84 0.751a 3.17 (2.75–3.65) 3.17 (2.67–3.67) 0.265c

OACs OAC_1, n (%) 42 (40.0) 316 (33.55) 0.007b 103 (40.87) 257 (32.00) <0.001b

Preoperative combined
medication, n (%)

85 (80.95) 746 (78.53) 0.036d 198 (78.57) 583 (72.60) 0.161d

Interruption, day, n (%) 25 (23.81) 161 (17.09) 0.005b 50 (19.84) 138 (17.19) 0.855b

Postoperative NOACs, n (%) 102 (97.14) 790 (83.86) <0.001b 190 (75.40) 713 (88.79) <0.001b

T6, mo, median (IQR) 2.2 (1–4) 2.5 (1–3.2) 0.991c 3 (1–4) 2 (1–3) 0.013c

Adjustment, n (%) 86 (81.90) 282 (29.94) 0.164d 92 (36.51) 230 (28.64) 0.012b

(Continued)
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positive contributions to the model above this value indicat-
ing higher risk, and negative contributions below 0 indicat-
ing lower risk. Moreover, the direction of the effect of top
features on thrombosis and bleeding is shown in ►Figs. 3

and 4. Patients with older age (age>75), the shorter of the
duration of OAC (T6<1 month), higher BNP level (BNP>500
pg/mL), the higher fibrinogen level (Fib>3 g/L), lower TG
level (TG<1mmol/L), and alcohol consumption are more
likely to develop thrombosis. Meanwhile, long-term use of
OAC (T7>5 months), lower PLT level (<200�109/L), and

higher UA level (>400 μmol/L) are more likely to result in
bleeding.

Feature Selection for Constructing the Final ML
Models
Based on the results of SHAPmethod and feature importance,
we further refined features and reconstruct the final predic-
tion models. The feature was awarded 1 point if it appeared
in the top 20 of both algorithms, and 2 points if it was in the
top 10 for both algorithms. If a feature ranked in the top 10 of

Table 1 (Continued)

Categories Variables Thrombosis (105) Nonthrombosis (942) p Bleeding (252) Nonbleeding (803) p

T7 >3 mo, n (%) 23 (21.90) 140 (14.86) 0.001b 54 (21.43) 109 (13.57) 0.002c

T5 >3 mo, n (%) 61 (58.10) 533 (56.58) 0.002b 173 (68.65) 427 (53.18) <0.001b

Abbreviations: ACT, activated clotting time of whole blood; Alb, albumin; ALT, alanine transaminase; AS, atherosclerosis; AST, aspartate
transaminase; BMI, body mass index; BNP, B-type natriuretic peptide; CA, catheter ablation; CIS, chronic myocardial ischemia syndrome; DM,
diabetesmellitus; EF, ejection fraction; Fib, fibrinogen; First episode AF, first episode atrial fibrillation; FS, fractional shortening; GLU, glucose; HDL_C,
high-density lipoprotein cholesterol; HF, heart failure; LAA-D, left atrial appendage depth; LAA-W, left atrial appendage width; LAD, left atrial
dimension; LDL_C, low-density lipoprotein cholesterol; NOACs, non-vitamin antagonist oral anticoagulants; OAC_1, OAC before CA operation; OACs,
oral anticoagulants; PCT, procalcitonin; PeAF, persistent atrial fibrillation; PLT, platelets; PT-INR, prothrombin time international normalized ratio;
SD, standard deviation; T3, operating time; T4, the duration of heparin; TBA, total bile acids; Tch, total cholesterol; TG, triglyceride; TT, thrombin
time; UA, uric acid; Interruption, the proportion of OAC was started the day after CA therapy; T6, the duration of OAC after discharge (before
adjustment); T7, proportion of the duration of OAC >3 months on the adjustment; T5, proportion of the total duration of OAC >3 months.
�The two target columns do not all conform to a normal distribution because the data are not the same. For example, in the thrombosis group,
“weight” was homogeneous and a t-test was used and presented as mean� standard deviation, whereas in the bleeding group, “weight” was not
homogeneous and a nonparametric test was chosen and presented as median (25%–75%).
aIndependent sample t-test.
bPearson χ2-test.
cWilcoxon–Mann–Whitney test.
dFisher’s exact test.

Table 2 Performance of the models based on different ML algorithms

Model Recall Specificity BA ACC AUC

Thrombosis RF 0.777 (0.018) 0.653 (0.009) 0.715 (0.010) 0.664 (0.009) 0.795 (0.006)

XGBoost 0.841 (0.015) 0.731 (0.010) 0.786 (0.009) 0.740 (0.009) 0.854 (0.005)

GBT 0.626 (0.039) 0.717 (0.010) 0.672 (0.020) 0.708 (0.010) 0.730 (0.011)

LightGBM 0.731 (0.019) 0.640 (0.010) 0.685 (0.010) 0.650 (0.010) 0.720 (0.006)

NB 0.453 (0.029) 0.920 (0.010) 0.687 (0.014) 0.887 (0.009) 0.887 (0.007)

LR 0.672 (0.034) 0.721 (0.017) 0.697 (0.017) 0.714 (0.014) 0.778 (0.009)

NN 0.655 (0.029) 0.716 (0.016) 0.685 (0.015) 0.706 (0.014) 0.722 (0.015)

DNN 0.730 (0.018) 0.654 (0.012) 0.692 (0.010) 0.663 (0.011) 0.737 (0.006)

Bleeding RF 0.642 (0.007) 0.799 (0.007) 0.721 (0.005) 0.764 (0.006) 0.800 (0.002)

XGBoost 0.744 (0.009) 0.791 (0.006) 0.767 (0.004) 0.781 (0.004) 0.864 (0.002)

GBT 0.644 (0.015) 0.823 (0.012) 0.734 (0.010) 0.786 (0.010) 0.837 (0.005)

LightGBM 0.576 (0.009) 0.805 (0.009) 0.691 (0.006) 0.747 (0.006) 0.721 (0.003)

NB 0.548 (0.011) 0.964 (0.004) 0.756 (0.006) 0.910 (0.003) 0.925 (0.002)

LR 0.668 (0.016) 0.734 (0.008) 0.701 (0.009) 0.719 (0.008) 0.800 (0.004)

NN 0.671 (0.016) 0.674 (0.018) 0.672 (0.009) 0.673 (0.012) 0.744 (0.009)

DNN 0.617 (0.014) 0.700 (0.009) 0.659 (0.009) 0.679 (0.008) 0.712 (0.004)

Note: The values in bold is the maximum value in this measure.
Abbreviations: ACC, accuracy; AUC, area under the curve.
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only one algorithm, it was awarded 0.5 points. Additionally, 1
point was given if the feature also appeared in the SHAP
results (top 20). Furthermore, a feature was awarded 1 point
if it appeared in the top 20 of only one algorithm but also
appeared in the SHAP results (top 20). Each variable can be
assigned up to a maximum of 3 points based on the above
criteria. Finally, the features were sorted in descending order
according to their scores and included as predictor variables,
with the specific results shown in ►Table 3 and the specific
processing process shown in ►Supplementary Table S3

(available in the online version). A total of 25 features
were retained for the model of thrombosis and 27 features
were selected for the model of bleeding. The process of
remodeling was the same as above, with XGBoost and RF
algorithms selected and features weighted according to the
voting scores. Specific modeling results are shown
in ►Table 4. In addition to the thrombosis model using
XGBoost algorithm had some decline, the accuracies of other
models were stable and even better than those of previous
models, so an RF-based model for thrombosis (RF-T) and an

XGBoost_w-based model for bleeding (Xw-B) models were
used for the final model construction and prediction.

Discussion

The Performances of Multiple ML Models for
Thrombosis and Bleeding
Considering that the management of OAC following CA is
crucial to reduce the risk of thrombosis and bleeding, eight
ML models were developed to detect risk factors for throm-
bosis and bleeding in NVAF patients using 76 features. By
comparing eight commonly used ML algorithms, the
XGBoost and RF-based models were the most powerful in
evaluating the importance of each factor in predicting AE.
Our statistical measures of performance scores (AUC) exist
some discrepancies with the results of other studies. In a
cohort study of 9,670 patients, the AUC of the model for
predicting ischemic stroke based on GBT algorithm reached
0.685,26while our model for predicting thrombosis based on
GBT algorithm was 0.730. The AUCs for bleeding risk

Fig. 1 Top 40 significant features of thrombosis and bleeding. Feature importance obtained by RF algorithm and XGBoost algorithm for
(A) Thrombosis group by RF algorithm, (B) Bleeding group by RF algorithm, (C) Thrombosis group by XGBoost algorithm, and (D) Bleeding group
by XGBoost algorithm. OAC_2, type of OAC in hospital after CA operation; OAC_3, type of initial after discharge (before adjustment);
OAC_4, type of OAC after discharge (after adjustment). The label of dosage is same as OAC. T3, operating time; T4, the duration of heparin; T5,
the total duration of OAC; T6, the duration of OAC after discharge (before adjustment); T7, the duration of OAC after discharge (after
adjustment). Other abbreviations are mentioned in ►Table 1.
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Fig. 2 SHAP values for thrombosis and bleeding by XGBoost algorithm. SHAP values obtained by XGBoost algorithm for (A) SHAP absolute value
for thrombosis group, (B) SHAP summary plot for thrombosis group, (C) the SHAP absolute value for bleeding group, and (D) SHAP
summary plot for bleeding group. OAC_2, type of OAC in hospital after CA operation; OAC_3, type of initial after discharge (before adjustment).
The label of dosage is same as OAC. T3, operating time; T6, the duration of OAC after discharge (before adjustment); T7, the duration
of OAC after discharge (after adjustment). Other abbreviations are mentioned in ►Table 1.
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prediction ranged from 0.57 to 0.61 in a cohort study, while
our result can reached 0.876.27 There may be three reasons
for the difference in model accuracy. The first is that the data
come from different sources. The second is the choice of
variables, which included a total of 43 variables, but 42 of
them are binary variables. Binary variables provide very
limited information, which may be the main reason for the
low AUCs of their research. In addition, the indicator for
assessing model was different. In our model, a recall value
was used for hyperparameter tuning, but both precision and
accuracy were reduced to varying degrees. Nonetheless, the
performances were consistent in that the ML models
achieved a better performance in prediction of the long-
term risk of thrombosis and bleeding compared to CHA2DS2-
VASc and HAS-BLED risk scores. Even compared to our
previous study, the AUCs for the risk of LAA thrombosis
ranged from0.889 to 0.897.28 Fromaholistic perspective, the
overall accuracies of bleeding were inferior to that of the

thrombosis model, and the bleeding model has significantly
higher specificity.

To achieve a more streamlined model so that the clinical
use of a minimum number of clinical indicators can directly
predict risks, we achieved comparable performance with
AUCs of 0.799 and 0.890 for RF-T and Xw-B models, respec-
tively. Consequently, the RF-Tmodel includes 25 features and
Xw-B model includes 27 features from several different
categories without including any clinical information that
might be expensive, tedious, and time-consuming to acquire.
The results also showed that XGBoost and RF algorithms
were widely recognized for their efficiency and effectiveness
in a variety of scenarios, outperforming other algorithms.
The tree-based ensemble learning methods also provide
built-in feature importance estimates that recognize the
most impactful features in intricate exposure datasets.29,30

While deep learning significantly improves model accuracy
in learning tasks such as image classification and

Fig. 3 Partial dependence plot for the top nine representative features for predicting thrombosis. The risk of thrombosis is influenced by (A) age
and blood glucose (GLU), (B) the duration of OAC after discharge (before adjustment) and diabetes mellitus (DM), (C) BNP and left atrial
appendage width (LAA-W), (D) total bile acids (TBA) and albumin (Alb), (E) fibrinogen (Fib) and type of OAC in hospital after CA operation, (F) Cr
and Alb, (G) triglyceride (TG) and type of OAC in hospital after CA operation, (H) drinking and TBA, and (I) GLU and drinking. CA, catheter
ablation.
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electrocardiogram analysis, its performance was not out-
standing in small data models.31 Therefore, this also sug-
gested that the tree-based ensemble learning algorithms
may be the first choice when the amount of data is not large
and without imaging data.

The Differences and Correlations between Thrombosis
and Bleeding Events
To further explore the contribution of different risk factors to
models, feature importance and SHAP analysis were carried
out. Interestingly, BNP levels were identified as top-ranked
predictors in both models by SHAP analysis. In the thrombo-
sis model, BNP ranked third, with an increased risk of
thrombosis at levels above 500 pg/mL. The BNP ranked
eighth in bleeding model. Although the thresholds are not
clear, the overall trend is consistent. The higher the level of
BNP, the higher the risk of bleeding. Consistent with the
study of ARISTOTLE cohort, NT-proBNP levels in patients

with AF are associated not onlywith ischemic stroke risk, but
also with bleeding risk.32 Furthermore, in our previous
research of LAA thrombosis, the plasma BNP level was
significantly higher (BNP level>400 pg/mL) in patients
with LAA thrombosis than in those without LAA thrombo-
sis.28 In the SHAP results, older agewith higher blood glucose
level in patients with NVAF was prone to thrombosis, which
is consistent with another research that fasting bloodglucose
was reported to be an independent predictor of PLT-depen-
dent thrombosis in stable coronary artery disease patients.33

In addition, patients with NVAF and diabetes are more likely
to develop thrombosis when OAC is used for less than
1 month (T6). In terms of predicting bleeding, patients on
warfarinwithwider LADaremore likely to be at higher riskof
bleeding. Consistent with the findings of Lu et al, both
emphasize the use of OAC as the most important risk factor
in bleeding events.26 The ALT levels ranged from 13 to 31 IU/L
across the quartiles from the collected dataset. No increased

Fig. 4 Partial dependence plot for the top nine representative features for predicting bleeding. The risk of bleeding is influenced by (A) type of
initial after discharge (before adjustment) and LAD, (B) ALT and BMI, (C) the dosage of initial after discharge (before adjustment) and EF,
(D) high-density lipoprotein cholesterol (HDL_C) and Fib, (E) heparin dose and direct bilirubin (DBIL), (F) platelets (PLT) and type of initial after
discharge (after adjustment), (G) the duration of OAC after discharge (after adjustment) and PLT, (H) BNP and heparin dose, and (I) uric
acid (UA) and DBP. ALT, alanine transaminase; BMI, body mass index; LAD, left atrium diameter; OAC, oral anticoagulation.
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Table 3 The subset of features for the final model for thrombosis and bleeding

Thrombosis Bleeding

Feature Score Feature Score

Age 2 OAC_3a 3

T4 2 OAC dosage_3a 2

TBA 1.5 Tch 2

ALT 1.5 T6 1.5

GLU 1.5 BNP 1.5

BNP 1.5 Alb 1.5

Fib 1.5 TG 1.5

LDL_C 1.5 PLT 1.5

PLT 1 T7 1.5

Interruption 1 Cr 1.5

TG 1 PCT 1

AST 1 UA 1

T3 1 Fib 1

EF 1 AST 1

Alb 1 GLU 1

Beta blocker_1b 0.5 ALT 1

Sex 0.5 TT 1

Drug adjustment 0.5 LAD 1

OAC dosage_1b 0.5 PPI_1b 0.5

NSAID_2a 0.5 Diabetes 0.5

CIS 0.5 Sex 0.5

T7 0.5 Drug adjustment 0.5

PPI_2a 0.5 Interruption 0.5

Cr 0.5 LDL_C 0.5

Drinking 0.5 HDL_C 0.5

Heparin dose 0.5

OAC dosage_1b 0.5

Abbreviations: T4, the duration of heparin; T3, operating time; OAC_3, type of OAC after discharge (before adjustment); T6, the duration of OAC
after discharge (before OAC regimen adjustment); T7, the duration of OAC after discharge (after OAC regimen adjustment).
Note: The variables in bold are those present in both models.
aCA preoperation.
bPostoperative CA.

Table 4 Performances of the simplified models based on two algorithms

Model Recall Specificity BA ACC AUC

Thrombosis XGBoost 0.731 (0.025) 0.706 (0.010) 0.718 (0.014) 0.708 (0.010) 0.798

XGBoost_w 0.730 (0.022) 0.680 (0.008) 0.705 (0.012) 0.685 (0.008) 0.773

RF 0.774 (0.015) 0.673 (0.010) 0.724 (0.001) 0.683 (0.001) 0.799

RF_w 0.720 (0.024) 0.693 (0.008) 0.707 (0.012) 0.696 (0.007) 0.794

Bleeding XGBoost 0.773 (0.013) 0.806 (0.009) 0.790 (0.007) 0.799 (0.007) 0.885

XGBoost_w 0.780 (0.014) 0.805 (0.007) 0.792 (0.006) 0.800 (0.005) 0.890

RF 0.761 (0.011) 0.705 (0.008) 0.733 (0.006) 0.717 (0.006) 0.833

RF_w 0.711 (0.011) 0.821 (0.006) 0.766 (0.004) 0.797 (0.004) 0.872

Note: The values in bold is the maximum value in this measure.
Abbreviations: ACC, accuracy; AUC, area under the curve; RF_w, RF algorithm using features weighted; XGBoost_w, XGBoost algorithm using
features weighted.
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risk of bleeding was observed in patients with slightly
elevated ALT levels. This finding may indicate that patients
with NVAF with mild abnormalities in liver enzymes do not
need to be overly concerned about the risk of bleeding.
Patients with a high body mass index level who received
warfarin had a lower risk of major bleeding compared with
normal patients. This could be attributable to the dose of
warfarin given to obese patients that is not adjusted for their
weight on an individual basis. It could also be because the
dose was not adjusted for long-term weight gain.34

Based on the voting strategy in combination with the
feature importance and SHAP analysis, the most important
influencing factors are clarified. Among the top 25 significant
risk factors for thrombosis, top 8 were the most predictive
with age, the duration of heparin, total bile acids (TBA), ALT,
blood glucose, the level of BNP, fibrinogen, and low-density
lipoprotein cholesterol (LDL_C). Among the top 27 significant
risk factors for bleeding, the model identified that top 10
were the most predictive, including OAC category, dosage
and duration, PLT, BNP, blood lipid, and albumin level. In
general, only BNP levels were significant predictors of both
thrombosis and bleeding events. In NVAF patients undergo-
ing CA therapy, the risk of thrombosis is more commonly
associated with advanced age, TBA, and the duration of
heparin, whereas the risk of bleeding is more dependent
on the choice of anticoagulation regimen and coagulation
indicators.

Limitations and Future Study

Several limitations of the study are worth mentioning. The
dataset used to build the model was derived from one
center covering 1,100 patients, which may unintentionally
over- or underestimate the risks. The feasibility and ex-
tensibility of the results need to be verified in future
studies with larger samples. Several potential features
such as inflammation indicators and cardiac troponin
with more than 30% missing values were excluded from
our study. However, in many studies inflammatory
markers play an important predictive role in adverse out-
comes in patients with NVAF. The improvement of our ML
models could be more significant with this additional
information. More importantly, we only focused on
whether the patient had an event during the follow-up
period, and if it occurred, it was used as an endpoint, and
we did not consider whether there were subsequent
adjustments to the anticoagulation strategy. Hence, we
will continue to follow this population to reduce the risk of
AEs by adjusting the anticoagulation strategy to optimize
the prediction model. Although the model that we have
constructed can predict risk and be used to warn and alert
potentially high-risk populations, it is currently not suit-
able for direct application in clinical scoring due to the
excessive number of clinical features. Therefore, the next
step is to enlarge the dataset, construct assessment scales,
and integrate them into a web-based platform that can
directly assist health care professionals in risk assessment
of patients with NVAF.

Conclusion

In this study, we evaluated and compared eight ML algo-
rithms in the detection of risk factors of both thrombosis and
bleeding. The final models, RF-T and the Xw-B, were able to
identify high-risk NVAF patients suffering from potential
thrombosis and bleeding based on a few easy-to-find fea-
tures. We also identified that age, TBA, and BNP level are
crucial in predicting thrombosis, while anticoagulation regi-
men, coagulation indictors, and BNP level were most predic-
tive of bleeding. In summary, this study provides clinical
evidence–based advice to optimize the anticoagulation strat-
egy for NVAF patients and is of great significance for the
prevention of thrombosis and bleeding-related events.

What is known about this topic?

• Inappropriate use of oral anticoagulants (OACs) for
nonvalvular atrial fibrillation (NVAF) not only fails to
prevent thrombosis, but is also associated with a
higher risk of bleeding.

• This study aimed to develop clinical data-driven ma-
chine learningmethods to dynamically predict throm-
bosis and bleeding to develop more refined OAC
treatment strategies for AF patients.

What does this paper add?

• The simplified machine learning models RF-T and Xw-
B have better prediction performance for thrombosis
and bleeding, and the overall accuracy (AUC) reaches
0.799 and 0.890, respectively.

• The duration of heparin and BNP level are closely
related to the risk of thrombosis, while the adminis-
tration strategy of OAC, the level of PLT, and BNP play a
crucial role in the occurrence of bleeding.
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