Synlett
DOI: 10.1055/a-2352-9691
letter

New Dephenylated Analogues of (–)-Goniofufurone: Optimization of Synthesis from l-Xylose

a   University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
,
Mirjana Popsavin
a   University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
,
Vesna Kojić
b   University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
,
Goran Benedeković
a   University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
,
Velimir Popsavin
a   University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
c   Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
,
Bojana Srećo Zelenović
a   University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
› Author Affiliations
This work was supported by research grants from the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia (Grants No. 451-03-66/2024-03/200125 and 451-03-65/2024-03/200125). This work has also received funding from the Serbian Academy of Sciences and Arts under the strategic projects program (Grant agreement No. 01-2019-F65), as well as from a research project from the same institution (Grant No. F-130).


Abstract

Natural products containing highly oxygenated furanofuranone fragments are known for their potent biological activity, but also for their challenging total synthesis. In this study, the synthesis of five novel dephenylated (–)-goniofufurone analogues was completed and their cytotoxic activity against eight malignant and one normal human cell line was evaluated. Compared with previous syntheses of similar analogues, the synthesis was carried out starting from l-xylose, resulting in improved yields and a reduced number of synthetic steps for three divergent intermediates.

Supporting Information



Publication History

Received: 05 June 2024

Accepted after revision: 25 June 2024

Accepted Manuscript online:
25 June 2024

Article published online:
18 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Fang X, Anderson JE, Chang C.-j, Fanwick PE, McLaughlin JL. J. Chem. Soc., Perkin Trans. 1 1990; 1655
  • 2 Popsavin V, Srećo B, Benedeković G, Francuz J, Popsavin M, Kojić V, Bogdanović G. Eur. J. Med. Chem. 2010; 45: 2876
  • 3 Benedeković G, Francuz J, Kovačević I, Popsavin M, Srećo Zelenović B, Kojić V, Bogdanović G, Divjaković V, Popsavin V. Eur. J. Med. Chem. 2014; 82: 449
  • 4 Svirčev M, Benedeković G, Kovačević I, Popsavin M, Kojić V, Jakimov D, Srdić-Rajić T, Rodić MV, Popsavin V. Tetrahedron 2018; 74: 4761
  • 5 Francuz J, Kovačević I, Popsavin M, Benedeković G, Zelenović BS, Kojić V, Jakimov D, Aleksić L, Bogdanović G, Srdić-Rajić T, Lončar E, Rodić MV, Divjaković V, Popsavin V. Eur. J. Med. Chem. 2017; 128: 13
  • 6 Boger DL, Hong J. J. Am. Chem. Soc. 2001; 123: 8515
  • 7 Srećo-Zelenović B, Kekezović S, Popsavin M, Kojić V, Benedeković G, Popsavin V. J. Serb. Chem. Soc. 2019; 84: 1345
  • 8 Srećo B, Benedeković G, Popsavin M, Hadžić P, Kojić V, Bogdanović G, Divjaković V, Popsavin V. Tetrahedron 2011; 67: 9358
  • 9 Kovačević I, Popsavin M, Rodić MV, Kojić V, Popsavin V. Tetrahedron Lett. 2019; 60: 684
  • 10 Gracza T, Hasenöhrl T, Stahl U, Jäger V. Synthesis 1991; 1108
  • 11 Bock K, Lundt I, Pedersen C. Carbohydr. Res. 1988; 179: 87
  • 12 Li JJ. Medicinal Chemistry for Practitioners. Wiley; Hoboken: 2020
  • 13 Node M, Ohta K, Kajimoto T, Nishide K, Fujita E, Fuji K. Chem. Pharm. Bull. 1983; 31: 4178
  • 14 Cao Y, Yang X, Du D, Xu X, Song F, Xu L. Int. J. Chem. (Toronto, ON, Can.) 2011; 3 (03) 113 DOI: 10.5539/ijc.v3n3p113.
  • 15 Stanisavljević SM, Zelenović BM. S, Popsavin M, Rodić MV, Popsavin V, Kojić VV. J. Serb. Chem. Soc. 2023; 88: 113
  • 16 3,6-Anhydro-7-O-benzyl-2-deoxy-5-O-methyl-l-ido-heptono-1,4-lactone (5) and 3,6-Anhydro-2-deoxy-5,7-di-O-benzyl-l-ido-heptono-1,4-lactone (7) BnTCAI (0.19 mmol, 1.2 equiv for 7, 0.09 mmol, 1.1 equiv for 5) and a 1% solution of TfOH in CH2Cl2 (0.15 equiv) were added to a stirred solution of 2 (0.16 mmol) or 4 (0.08 mmol, 1 equiv) in 1:1 CH2Cl2–hexane, and the mixture was stirred at rt for 1.5 h. For compound 5, the reaction was stopped at this step, whereas for compound 7, an additional portion of BnTCAI (0.18 mmol, 1.1 equiv) was added, and stirring was continued for an additional 1.5 h at rt. When the reaction was complete, the mixture was neutralized with NaHCO3 (1 equiv), concentrated, and purified by flash column chromatography [silica gel, CHCl3–acetone (49:1)]. 5 White needle-like crystals; yield: 89%; mp 58–60 °C; [α]D –5.4 (c 0.50, CHCl3); Rf = 0.13 (light petroleum–Et2O, 1:1). IR (KBr): 1773 (C=O). 1H NMR (400 MHz, CDCl3): δ = 2.70 (dd, J 2a,2b = 19.0, J 2a,3 = 2.1 Hz, 1 H, H-2a), 2.75 (dd, J 2a,2b = 18.8, J 2b,3 = 4.9 Hz, 1 H, H-2b), 3.45 (s, 3 H, –OCH3), 3.65 (dd, J 7a,7b = 10.2, J 6,7a = 6.4 Hz, 1 H, H-7a), 3.71 (dd, J 7a,7b = 10.2, J 6,7b = 4.7 Hz, 1 H, H-7b), 4.00 (d, J 5,6 = 4.2 Hz, 1 H, H-5), 4.30 (dt, J 6,7a = 6.4, J 6,7b = 4.4, J 5,6 = 4.4 Hz, 1 H, H-6), 4.54 and 4.64 (2 × d, J gem = 12.1 Hz, 2 × 1 H, CH 2Ph), 4.93 (dd, J 3,4 = 4.8, J 4,5 = 0.7 Hz, 1 H, H-4), 4.96 (td, J 3,4 = 4.8, J 2b,3 = 4.9, J 2a,3 = 2.1 Hz, 1 H, H-3), 7.27–7.40 (m, 5 H, CH2 Ph). 13C NMR (100 MHz, CDCl3): δ = 35.99 (C-2), 58.54 (OCH3), 67.88 (C-7), 73.54 (CH2Ph), 76.79 (C-3), 79.59 (C-6), 83.85 (C-5), 84.84 (C-4), 127.75, 128.02, 128.44, 128.92, 128.99 (5 CH from Ph-group) and 137.95 (Cq from Ph-group), 175.36 (C-1). HRMS (ESI): m/z [M + Na]+ calcd for C15H18NaO5: 301.10464; found: 301.1047. 7 White crystals; yield: 43%; mp 76–78 °C; [α]D –11.6 (c 0.50, CHCl3); Rf = 0.32 (CHCl3–Me2CO, 49:1). IR (CHCl3): 1787 (C=O). 1H NMR (400 MHz, CDCl3): δ = 2.69 (dd, J 2a,3 = 2.6, J 2a,2b = 19.4 Hz, 1 H, H-2a), 2.75 (dd, J 2b,3 = 5.1, J 2a,2b = 19.4 Hz, 1 H, H-2b), 3.72 (d, J 6,7 = 5.5 Hz, 2 H, 2 × H-7), 4.23 (d, J 5,6 = 4.1 Hz, 1 H, H-5), 4.31 (m, J 5,6 = 4.2, J 6,7 = 5.5 Hz, 1 H, H-6), 4.54 and 4.70 (2 × d, J gem = 11.9 Hz, 2 H, CH 2Ph on C-5), 4.59 and 4.62 (2 × d, J gem = 12.3 Hz, 2 H, CH 2Ph on C-7), 4.94 (dd, J 3,4 = 4.7, J 4,5 = 0.6 Hz, 1 H, H-4), 5.00 (td, J 3,4 = 4.8, J 2b,3 = 4.8, J 2a,3 = 2.7 Hz, 1 H, H-3), 7.27–7.40 (m, Ar-H, 10 H). 13C NMR (100 MHz, CDCl3): δ = 36.02 (C-2), 68.09 (C-7), 72.78 (CH2Ph), 73.60 (CH2Ph), 76.86 (C-3), 79.67 (C-6), 81.55 (C-5), 85.51 (C-4), 127.76, 127.78, 128.17, 128.44, 128.60, 137.11 and 137.89 (Ar-C), 175.30 (C=O). HRMS (ESI): m/z [M + Na]+ calcd for C21H22NaO5: 377.13589; found: 377.13589
  • 17 3,6-Anhydro-7-O-benzoyl-2-deoxy-5-O-methyl-l-ido-heptono-1,4-lactone (6) and 3,6-Anhydro-7-O-benzoyl-5-O-benzyl-2-deoxy-l-ido-heptono-1,4-lactone (9)A 10% solution of BzCl in CH2Cl2 (0.37 mmol, 2.2 equiv for 6 or 0.21 mmol, 2.1 equiv for 9) was added to a solution of compound 4 (0.17 mmol) or 8 (0.10 mmol, 1 equiv) in 1:1 anhyd CH2Cl2–pyridine. The mixture was stirred at rt for 4 h, then transferred to a separatory funnel and washed with 10% aq NaHCO3. The organic layer was dried (Na2SO4) and concentrated, and the residue was purified by flash column chromatography [silica gel, light petroleum–Et2O (1:1)]. 6 White needle-like crystals; yield: 93%; mp 115–116 °C; [α]D –15.0 (c 0.50, CHCl3); Rf = 0.22 (PE–Et2O, 1:1). IR (CHCl3): 1770 (C=O). 1H NMR (400 MHz, CDCl3): δ = 2.71 (br d, J 2a,3 = 1.4, J 2a,2b = 18.8 Hz, 1 H, H-2a), 2.78 (dd, J 2b,3 = 5.4, J 2a,2b = 18.8 Hz, 1 H, H-2b), 3.50 (s, 3 H, OMe), 4.11 (d, J 5,6 = 3.3 Hz, 1 H, H- 5), 4.45–4.55 (m, 3 H, H-6, H-7a and H-7b), 4.98 (d, J 3,4 = 4.7 Hz, 1 H, H-4), 5.01 (m, J 2a,3 = 1.3, J 2b,3 = 5.4, J 3,4 = 4.4 Hz, 1 H, H-3). 7.42–8.08 (m, 5 H, Ar-H, Bz). 13C NMR (100 MHz, CDCl3): δ = 35.99 (C-2), 58.68 (OMe), 62.67 (C-7), 77.01 (C-3), 78.67 (C-6), 83.91 (C-5), 84.72 (C-4), 128.45, 129.67, 129.79, 133.19 (Ar-C from Bz), 166.29 (C=O from Bz), 175.11 (C=O). HRMS (ESI): m/z [M + Na]+ calcd for C15H16NaO6: 315.0839; found: 315.08499. 9 White crystals; yield: 80%; mp 169–171 °C; [α]D –9.0 (c 0.50, CHCl3), R f = 0.22 (1:1 light petroleum/Et2O). IR (CHCl3): νmax 1770 (C=O), 1722 (C=O from Bz). 1H NMR spectrum (400 MHz, CDCl3): δ = 2.72 (dd,, J 2a,3 = 1.9, J 2a,2b = 18.8 Hz 1 H, H-2a), 2.78 (dd, J 2b,3 = 5.2, J 2a,2b = 18.8 Hz, 1 H, H-2b), 4.33 (d, J 5,6 = 4.2 Hz, 1 H, H-5), 4.47 (m, J 5,6 = 4.2, J 6,7 = 5.4 Hz, 1 H, H-6), 4.57 (d, J 6,7 = 5.7 Hz, 2 H, H-7), 4.63 and 4.74 (2 × d, J gem = 11.9 Hz, 2 H, CH 2Ph), 4.98 (d, J 3,4 = 4.5 Hz, 1 H, H-4), 5.04 (td, J 2a,3 = 1.9, J 2b,3 = 4.9, J 3,4 = 4.8 Hz, 1 H, H-3), 7.25–7.37 (m, Ar-H, 5 H, Bn), 7.42–8.06 (m, Ar-H, 5 H, Bz). 13C NMR spectrum (100 MHz, CDCl3): δ = 36.00 (C-2), 62.60 (C-7), 72.82 (CH2Ph), 77.07 (C-3), 78.68 (C-6), 81.26 (C-5), 85.23 (C-4), 127.94, 128.34, 128.44 (Ph from Bn), 128.70, 129.70, 133.19 (Ph from Bz), 129.76 (Cq from Bn), 136.72 (Cq from Bz), 166.25 (C=O from Bz), 175.08 (C=O). HRMS (ESI): m/z [M + Na]+ calcd for C21H20NaO6: 391.11521; found: 391.11698
  • 18 Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. Cancer Res. 1988; 48: 4827