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ABSTRACT

Purpose To explore the value of CT-based radiomics machine

learning models for differentiating enchondroma from atypi-

cal cartilaginous tumor (ACT) in long bones and methods to

improve model performance.

Materials and Methods 59 enchondromas and 53 ACTs in

long bones confirmed by pathology were collected retrospec-

tively. The features were extracted from preoperative CT ima-

ges of these patients, and least absolute shrinkage and selec-

tion operator (LASSO) regression was used for feature

selection and dimensionality reduction. The selected features

were used to construct classification models by thirteen ma-

chine learning algorithms. The data set was randomly divided

into a training set and a test set at a proportion of 7:3 by ten-

fold cross-validation to evaluate the performance of these

models.

Results A total of 1199 features were extracted, 9 features

were selected, and 13 radiomics machine learning models

were constructed. The area under the curve (AUC) of 11 mod-

els was more than 0.8, and that of 3 models was more than

0.9. The Extremely Randomized Trees model achieved the

best performance (AUC=0.9375±0.0884), followed by the

Adaptive Boosting model (AUC=0.9188±0.1010) and the Lin-

ear Discriminant Analysis model (AUC=0.9062±0.1459).

Conclusion CT-based radiomics machine learning models had

great ability to distinguish enchondroma and ACT in long

bones. By using filters to deeply mine high-order features in

the original image and selecting appropriate machine learn-

ing algorithms, the performance of the model can be im-

proved.

Key points

▪ CT-based radiomics machine learning models can distin-

guish enchondroma and ACT in long bones.

▪ Using filters and selecting advanced machine learning

algorithms can improve model performance.

▪ Clinical features have limited utility in distinguishing

enchondroma and ACT in long bones.
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ZUSAMMENFASSUNG

Ziel Untersuchung des Nutzens maschineller Lernmodelle für

CT-basierte Radiomics bei der Unterscheidung von Enchon-

dromen und atypischen Knorpeltumoren (ACT) in langen

Knochen und Methoden zur Verbesserung der Modellleistung.

Materialien und Methoden 59 Enchondrome und 53 ACTs in

langen Knochen, die histopathologisch bestätigt wurden, wur-

den retrospektiv erhoben. Die Merkmale wurden aus präopera-

tiven CT-Bildern dieser Patienten extrahiert, und die Least
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Absolute Shrinkage and Selection Operator (LASSO)-

Regression wurde zur Merkmalsauswahl und Dimensionalitäts-

reduktion verwendet. Die ausgewählten Funktionen wurden

verwendet, um Klassifizierungsmodelle mit dreizehn Algorith-

men des maschinellen Lernens zu konstruieren. Der Datensatz

wurde zufällig in einen Trainingssatz und einen Testsatz mit

einem Anteil von 7 × 3 durch zehnfache Kreuzvalidierung un-

terteilt, um die Leistung dieser Modelle zu bewerten.

Ergebnisse Insgesamt wurden 1199 Merkmale extrahiert,

neun Merkmale ausgewählt und dreizehn Modelle für maschi-

nelles Lernen in der Radiomik konstruiert. Die Fläche unter

der Kurve (AUC) von elf Modellen betrug mehr als 0,8

und die von drei Modellen mehr als 0,9. Das Extremely

Randomized Trees-Modell erzielte die beste Leistung

(AUC=0,9375±0,0884), gefolgt von dem Adaptiven Boost-

ing-Modell (AUC=0,9188±0,1010) und dem Linear Discrimi-

nant Analysis-Modell (AUC=0,9062±0,1459).

Schlussfolgerung CT-basierte Radiomics Machine Learning-

Modelle hatten eine große Fähigkeit, ein Enchondrom und

von einem ACT in langen Knochen zu unterscheiden. Durch

die Verwendung von Filtern, um hochrangige Features im Ori-

ginalbild tief abzubauen und geeignete Algorithmen für ma-

schinelles Lernen auszuwählen, kann die Leistung des Modells

verbessert werden.

Kernaussagen

▪ CT-basierte Radiomics Machine Learning-Modelle können

Enchondrome und ACTs in langen Knochen unterscheiden.

▪ Die Verwendung von Filtern und die Auswahl fortschrittli-

cher Algorithmen für maschinelles Lernen können die

Modellleistung verbessern.

▪ Klinische Merkmale haben begrenzten Nutzen bei der

Unterscheidung eines Enchondroms von einem ACT in

Röhrenknochen.

Introduction

The most common intermediate (locally aggressive) chondro-
genic tumor is the atypical cartilaginous tumor (ACT), which has
been specifically found to occur in the appendicular skeletons
(long and short tubular bones) according to the 2020 World
Health Organization (WHO) classification of bone tumors [1, 2].
Enchondroma is the most common benign chondrogenic tumor
[2]. Most of them are accidentally discovered without obvious
symptoms, and with the widespread use of MRI, the incidence of
them being accidentally found in long bones was higher than in
short bones [3]. The typical imaging features are round osteolysis
with popcorn-like calcifications in the medullary cavity of the me-
taphysis of long bones [2]. However, most enchondroma patients
can choose regular surveillance over surgery, while the main
treatments of ACT are surgical intralesional curettage and filling
of the tumor cavity. The probability of local recurrence is about
7.5–11% with only few metastases [1]. Therefore, it is important
to improve the accuracy of identifying enchondroma and ACT.

Radiomics is a relatively objective method that can identify tu-
mor heterogeneity and reflect potential structural and functional
information by extracting quantitative features with high
throughput from standard images and utilizing machine learning
algorithms for mathematical operations [4]. MRI-based radiomics
models have achieved great results regarding the differentiation
of chondrogenic tumors in long bones [5]. When it comes to de-
monstrating osteolysis and calcification of chondrogenic tumors,
CT is more advantageous than MRI. Nevertheless, there aren’t
many studies using CT-based radiomics models to identify chon-
drogenic tumors in long bones. The CT-based radiomics machine
learning model developed by Gitto et al. [6] performed admirably
with regard to distinguishing ACT from high-grade chondrosarco-
ma in long bones, but the validation set only included CT images
from PET-CT examination. Deng et al. [7] developed the CT-based
texture analysis model to classify enchondroma and low-grade
chondrosarcoma in long bones due to the limited number of in-

cluded patients and extracted features, resulting in low accuracy
in the model.

The aim of this study is to explore the value of CT-based radio-
mics machine learning models for distinguishing enchondroma
from ACT in long bones and methods to improve model perform-
ance.

Materials and Methods

Patient selection

Approval from the Institutional Review Board was obtained, and in
keeping with the policies for a retrospective review, informed con-
sent was not required. Inclusion criteria: 1) enchondroma and ACT
in long bones confirmed by pathology; 2) CT performed within
1 month before pathology. Exclusion criteria: 1) complicated
with pathological fracture; 2) no first CT scans of recurrent ACT;
3) radiotherapy or chemotherapy before CT scans; 4) secondary
ACT (▶ Fig.1).

Image acquisition

All enrolled patients underwent a multidetector row CT examina-
tion (Philips IQon Spectral CT; Siemens Somatom Definition AS
128; Siemens Somatom Sensatim 64). The CT scan parameters
were: voltage: 120 kV; variable tube current; slice thickness: 0.65
to 1 mm; matrix: 512×512; field of view: from 120×120mm to
400×400mm.

Image segmentation

Two musculoskeletal radiologists, observer 1 with three years of
experience and observer 2 with fifteen years of experience, used
the Research Oncology Suite of IntelliSpace Discovery (ISD, Ver-
sion 3.0, Philips Healthcare, The Netherlands) to perform semi-au-
tomatic 3D volume of interest (VOI) segmentation based on
threshold intensity (▶ Fig.2). The Interclass Correlation Coeffi-
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cient (ICC) was used to evaluate the repeatability of VOI segmen-
tation between observers. The CT images of 30 patients (enchon-
droma=16, ACT=14) were randomly selected from all patients
with chondrogenic tumors by observer 2 for repeatability verifica-
tion. When the ICC value of the feature was ≥0.90, it was consid-
ered to be a stable feature with great repeatability, and the follow-
up steps were continued.

Image Preprocessing and Feature extraction

The PyRadiomics plugin of ISD was used for image preprocessing
and feature extraction. CT images were resampled at a spatial re-
solution of voxels with a size of 1mm ×1mm ×3mm and discre-
tized with a fixed bin width of 25HU [8]. All radiomic features were
extracted with high throughput from the original and the filtered
image, including first-order statistics, shape-based (3D), gray lev-
el co-occurrence matrix (GLCM), gray level size zone matrix
(GLSZM), and gray level run length matrix (GLRLM). Filters inclu-

ded logarithm, exponential, square, square root, wavelet, and
Laplacian of Gaussian (LoG).

Feature selection and model development

R software (Version 2023.12.0+369) was used for feature selec-
tion and dimensionality reduction, and the IntelliSpace Medicina
Scientia Research Platform (ISMS, Version 3.0, Philips Healthcare,
The Netherlands) was used for model development. After standar-
dizing the features, ICC, t-tests, and least absolute shrinkage and
selection operator (LASSO) regression were used for feature selec-
tion and dimensionality reduction in R software. The selected fea-
tures were imported into ISMS, utilizing 13 machine learning al-
gorithms to develop the radiomics model. To evaluate the
performance of these models using ten-fold cross-validation, the
data set was randomly divided into a training set (n=78) and a
test set (n=34) at a 7:3 proportion in each cross-validation.

Statistical analysis

All statistical analyses were performed with SPSS (Version 27.0), R
software, and ISMS.The statistically significant level was set to a
two-sided P-value <0.05. The T-test was used to analyze continu-
ous variables, and the chi-square test was used to compare cate-
gorical variables. Indicators for evaluating the performance of the
model included the area under the curve (AUC), accuracy (ACC),
recall, precision, F1 score, Kappa, and Matthews correlation coef-
ficient (MCC). The receiver operating characteristic curve (ROC),
precision-recall curve (P-R), confusion matrix, and feature impor-
tance plot were drawn.

Results

Finally, 112 patients with enchondroma (n=59) or ACT (n=53) in
long bones met the inclusion and exclusion criteria. The age of pa-
tients with enchondroma (42.19 ± 18.30) was less than ACT
(50.42±11.94) (p=0.005), and there was no significant differ-
ence between sex (p = 0.480) and tumor location (p = 0.909)
(▶ Table1).

A total of 1199 radiomic features were extracted, including
1172 stable features with an ICC ≥0.90, then 388 features with
statistical significance (P <0.05) by t-test, and finally nine most
valuable features by LASSO regression for selection and dimen-
sionality reduction (▶ Fig.3 and ▶ Table2).

Among the 13 models constructed, eleven models had AUC
values above 0.8 and three models above 0.9 (▶ Table3). The Ex-
tremely Randomized Trees (ERT) model had the best performance
(AUC = 0.9375 ± 0.0884, ACC = 0.8500 ± 0.1225), followed by
the Adaptive Boosting (ADA) model (AUC = 0.9188 ± 0.1010,
ACC = 0.8732 ± 0.0970), and the Linear Discriminant Analysis
(IDA) model (AUC=0.9062±0.1459, ACC=0.8500±0.1346). The
ROC curve, P-R curve, confusion matrix, and feature importance
plot were drawn according to the analysis results of the ERT mod-
el, ADA model, and IDA model shown in ▶ Fig. 4, ▶ Fig. 5 and
▶ Fig.6.

According to the feature importance plot, the most important
feature in the ERT model was the zone entropy (ZE) of the GLSZM

▶ Fig.2 Volume of interest (VOI) segmentation of a 51-year-old
man with an atypical cartilaginous tumor in the distal femur and red
areas of a (axial) and b (coronal) are masked.

▶ Fig.1 Flowchart of patient selection. EC: enchondroma;
ACT: atypical cartilaginous tumor.
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feature from the logarithm-filtered image. By t-test again, the
mean of the ZE in ACT (7.4503 ± 0.1799) was higher than in
enchondroma (7.2035±0.2375) (P < 0.05). In the ADA model,
the most important feature was the surface area to volume ratio
(SA/V) of the shape-based (3D) feature from the original image.
The mean of the SA/V in ACT (0.2869±0.0855) was discovered
to be lower by t-test than in enchondroma (0.4782 ±0.1421)
(P < 0.05). The small area low gray level emphasis (SALGLE)
of the GLSZM feature from the logarithm-filtered image was
the most significant feature in the IDA model. The mean of the

SALGLE in ACT (0.0014±0.0010) was higher than in enchondroma
(0.006±0.003) by t-test once again (P <0.05).

Discussion

This study used a variety of filters to extract high-order radiomic
features from CT images and constructed radiomics models utiliz-
ing 13 machine learning algorithms to identify the enchondroma
and ACT in long bones. The results revealed that the AUC value of

▶ Fig.3 Least absolute shrinkage and selection operator (LASSO) regression results. a Cross-validation curve, the left dotted line represents the
minimum binomial deviance corresponding to the logarithm of the penalty coefficient (λ) (Log Lambda.min); the right dotted line symbolizes the
Log Lambda.min plus one standard error corresponding to Log ambda.1se. b Coefficients path diagram, each line denotes a feature, and the coef-
ficients of features tend to be sparse (0) as the logarithm of the penalty coefficient (λ) increases; the dotted line corresponds to Log Lambda.min,
and legends are the nine features selected at Log Lambda.min.

▶ Table1 Patient clinical data.

Enchondroma (n=59) ACT (n=53) P-value t/χ² value

Age (years) 0.005 –2.845*

Mean ± SD 42.19±18.30 50.42±11.94

Sex 0.480 0.498**

Male 25 (42.37%) 19 (35.85%)

Female 34 (57.62%) 34 (64.15%)

Location 0.909 1.536**

Proximal humerus 15 (25.42%) 14 (26.42%)

Proximal femur 10 (16.95%) 10 (18.87%)

Distal femur 22 (37.29%) 22 (41.51%)

Proximal tibia 7 (11.86%) 4 (7.55%)

Distal tibia 2 (3.39%) 2 (3.77%)

Proximal fibula 3 (5.08%) 1 (1.89%)

Note: In the column of the t/χ² value, * is the t value and ** is the χ value. SD: standard deviation; ACT: atypical cartilaginous tumor
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eleven models was more than 0.8 and that of three models was
more than 0.9.

In the clinical data, the age of patients with enchondroma is
lower than in ACT. Although some researchers have pointed out
that most chondrosarcoma patients are older than enchondroma
patients [9], in this study the difference in mean age between en-
chondroma and ACT patients is just eight years with a sizable
standard deviation. Consequently, we propose that age has lim-
ited utility in the differential diagnosis of ACT and enchondroma
in long bones. There were no significant differences in terms of
sex or tumor location between ACT and enchondroma in long
bones in this study. Pan et al. [10] found that the location of chon-

drogenic tumors was the most significant clinical risk factor. In
their study, there were notably more enchondroma patients in
short bones than chondrosarcoma, and the number of chondro-
sarcoma patients in the pelvis was much higher than enchondro-
ma, while there was no significant difference in the long bones.
According to the 2020 WHO classification of bone tumors [1],
ACT has been specifically referred to as an intermediate chondro-
genic tumor that occurs in the long and short tubular bones.
Therefore, we think that the long bone is the most valuable loca-
tion for differential diagnosis between enchondroma and ACT.

Among the nine most valuable features selected, three shape-
based (3D) features were extracted from the original image, and

▶ Table3 Performance of radiomics machine learning models.

Model AUC ACC Recall Precision F1 score Kappa MCC

Extremely Randomized Trees 0.9375 0.8500 0.8750 0.8433 0.8506 0.7000 0.7159

Adaptive Boosting 0.9188 0.8732 0.9000 0.8867 0.8689 0.7446 0.7786

Linear Discriminant Analysis 0.9062 0.8500 0.8750 0.8400 0.8467 0.7000 0.7192

Random Forest 0.8938 0.8357 0.8500 0.8350 0.8328 0.6720 0.6893

Gradient Boosting Classifier 0.8875 0.8607 0.8750 0.8767 0.8602 0.7220 0.7454

Naive Bayes 0.8854 0.8482 0.8750 0.8433 0.8506 0.6946 0.7115

Logistic Regression 0.8854 0.8357 0.8500 0.8367 0.8373 0.6696 0.6796

Light Gradient Boosting Machine 0.8792 0.8446 0.8500 0.8633 0.8475 0.6887 0.7051

Quadratic Discriminant Analysis 0.8521 0.8089 0.8250 0.8283 0.8090 0.6141 0.6406

Decision Tree 0.8510 0.8357 0.8250 0.8617 0.8290 0.6696 0.6873

Support Vector Machine 0.8152 0.8089 0.8000 0.8367 0.8087 0.6166 0.6320

Multilayer perceptron 0.7875 0.7714 0.7250 0.8350 0.7394 0.5391 0.5784

K-Nearest Neighbor 0.6948 0.6536 0.4750 0.7583 0.5626 0.3077 0.3374

Note: Sorted by AUC value in descending order. All values are the mean of the 10-fold cross-validation results. AUC: area under the curve; ACC: accuracy;
MCC: Matthews correlation coefficient

▶ Table2 The most valuable feature.

Feature name Feature class Source image

Maximum 2D diameter (slice) Shape (3D) Original

Compactness 1 Shape (3D) Original

Surface area to volume ratio Shape (3D) Original

Small area low gray level emphasis GLSZM Logarithm

Zone entropy GLSZM Logarithm

Size-zone non-uniformity normalized GLSZM Exponential

Root mean squared First order Wavelet (low-high-low pass filter)

Sum variance GLCM Wavelet (low-high-high pass filter)

Informational measure of correlation 1 GLCM Wavelet (high-high-high pass filter)

Note: GLSZM: gray level size zone matrix; GLCM, gray level co-occurrence matrix
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six high-order features were extracted from the filtered image. Be-
cause shape features are independent of the gray value of the vox-
el, they can only be extracted from the original image, while other
features are calculated based on the gray value of the voxel and can
be extracted from both the original image and the filtered image
[4]. By using a variety of filters, plenty of high-order features were
extracted, and more valuable features were used to construct mod-
els than in previous research [7]. Compared with the logistic regres-
sion (LR) model in their research, it had a higher AUC value and ac-
curacy in this study, and there were other models that performed
better than the LR model. The performance of the radiomics model
can be improved by increasing the sample size, using filters to dee-
ply mine high-order features from the original image, and selecting
appropriate machine learning algorithms.

In the feature importance plot of the ERT model, the most im-
portant feature was the ZE:

ZE measures the uncertainty or randomness in the distribution of
zone sizes and gray levels, and the higher the value, the higher the

heterogeneity in the texture patterns [4]. By t-test again, the
mean of the ZE in ACT was higher than in enchondroma, indicat-
ing that the heterogeneity of ACT in long bones is higher than
that of enchondroma. The most important feature in the ADA
model was the SA/V:

This feature is dependent on the volume of the segmented VOI,
and a lower value indicates that the shape of the segmented VOI
is closer to a sphere [8]. The mean of the SA/V in ACT was discov-
ered to be lower by t-test than in enchondroma, meaning that
ACT has a more spherical-shaped volume in long bones than
enchondroma, which may be related to the former’s more locally
aggressive growth tendency [11]. The SALGLE was the most sig-
nificant feature in the IDA model:

Zone Entropy = – P(i,j) log2(P(i,j) + Є)
Ng
i = 1

Ns
j = 1

Surface Area to Volume ratio = V
A

▶ Fig.4 The ability of the Extremely Randomized Trees model to correctly classify an enchondroma (label=0, in figure) and atypical cartilaginous
tumor (ACT, label=1, in figure) in long bones in the test set. a Receiver operating characteristic curve (ROC), the blue solid line represents the ROC
curve and corresponding area under the curve (AUC) for correctly classified enchondroma, the green solid line represents the ROC curve and cor-
responding AUC for correctly classified ACT, the red dotted line represents the micro-average ROC curve and corresponding AUC, and the purple
dotted line represents the macro-average ROC curve and corresponding AUC; b Precision-recall curve (P-R), the blue solid line represents the binary
P-R curve and AUC, and the red dotted lines represent the average precision; c Confusion matrix, the rows represent the enchondroma and ACT of
the actual classification, and the columns represent enchondroma and ACT of model prediction classification; d Feature importance plot, the im-
portance weight ranking of each feature for correct classification of enchondroma and ACT in this model.

Small Area Low Gray Level Emphasis =

P(i,j)
i2j2

Ng

Nz

i = 1

Ns
j = 1
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▶ Fig.5 The ability of the Adaptive Boosting model to correctly classify an enchondroma (label=0, in figure) and atypical cartilaginous tumor (label=1,
in figure) in long bones in the test set. a Receiver operating characteristic curve; b Precision-recall curve; c Confusion matrix; d Feature importance plot.

▶ Fig.6 The ability of the Linear Discriminant Analysis model to correctly classify an enchondroma (label=0, in figure) and atypical cartilaginous
tumor (label=1, in figure) in long bones in the test set. a Receiver operating characteristic curve; b Precision-recall curve; c Confusion matrix;
d Feature importance plot.
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SALGLE measures the proportion of joint distribution of smaller
size zones with lower gray values in the image. The larger its value,
the greater the prevalence of these areas in the image and the
more uneven the distribution of these areas [8]. The mean of the
SALGLE in ACT was higher than in enchondroma by t-test once
again, which indicates that ACT in long bones may be more prone
to small zone necrosis, leading to an uneven density of the image
compared to enchondroma.

The ERT model, ADA model, IDA model, random forest (RF)
model, and gradient boosting classifier (GBC) model are the first
few models that performed well in this study. They all utilize en-
semble learning algorithms. Ensemble learning algorithms inte-
grate many different machine learning algorithms in order to con-
struct multiple models to enhance prediction accuracy and
reduce generalization errors [12]. Ishaq et al. [13] used nine ma-
chine learning algorithms to construct machine learning models
for predicting the survival of 299 patients with heart failure. The
results showed that the ERT model achieved the best accuracy
(ACC=0.9262), followed by the RF model (ACC=0.9188), the
ADA model (ACC=0.8852), and the GBC model (ACC=0.8852),
which performed better than the decision tree model
(ACC=0.8778) and the LR model (ACC=0.8442). Erdem et al.
[14] asked two researchers to extract features from MRI images
and utilize seven machine learning algorithms to construct radio-
mics models to classify enchondroma (n=57) and chondrosarco-
ma (n=31). The results showed that when using all features to
construct models, both researchers found the best model to be
the neural network (NN) model (AUC = 0.979, AUC = 0.984,
respectively). When using selected features to construct models,
the best model for the two researchers was the GBC (AUC=0.990)
model and the NN model (AUC=0.979). The NN algorithm is the
fundamental algorithm of deep learning that can automatically
identify specific structures when combined with machine learn-
ing, but it generally requires a large sample size [15]. Combined
with the findings of these studies, it is found that utilizing ad-
vanced machine learning algorithms such as ensemble learning al-
gorithms and deep learning algorithms can improve the predic-
tion performance of models.

There are some limitations: First, the number of patients is re-
latively small due to the low incidence rate of enchondroma and
ACT, the absence of treatment for most enchondroma patients,
and the limiting location and grading of chondrogenic tumors.
Second, this study did not employ MRI images of chondrogenic
tumor patients to construct models concurrently, making it im-
possible to directly assess the performance differences between
CT-based and MRI-based radiomics machine learning models.

Conclusion

This study found that CT-based radiomics machine learning mod-
els have great ability to distinguish enchondroma from ACT in
long bones. The prediction performance of the model can be im-
proved by using filters to deeply mine high-order features from
the original image and selecting advanced machine learning algo-
rithms.
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