Aktuelle Ernährungsmedizin 2024; 49(04): 318-332
DOI: 10.1055/a-2340-2207
CME-Fortbildung

Kochsalz in der Ernährung

Table salt in nutrition
Peter M. Jehle
,
Daniela R. Jehle
,
Julia Beckert
,
Maria Kauk
,
Undine Gaida
,
Anna M. Jehle

Zusammenfassung

Natrium ist ein essenzieller Mineralstoff, der jedoch nur in begrenzter Menge zugeführt werden sollte. So zeigt die DEGS-Studie (DEGS: Deutsches Erwachsenen Gesundheitssurvey), die sich mit der Salzzufuhr der deutschen Bevölkerung beschäftigt, dass die mediane Speisesalzaufnahme bei 70% der Frauen und 80% der Männer deutlich über der Empfehlung der DGE (Deutsche Gesellschaft für Ernährung) von 6 g pro Tag liegt. Auch die Weltgesundheitsorganisation (WHO) empfiehlt in ihren Leitlinien einen Orientierungswert zur Salzaufnahme von 5 g pro Tag, was etwa einem Teelöffel entspricht. Kochsalz stellt einen wesentlichen Einflussfaktor der Blutdruckregulation und des Renin-Angiotensin-Aldosteron-Systems (RAAS) dar. Das Verständnis dieser Regelkreise gewinnt zunehmend an Bedeutung, da die arterielle Hypertonie noch immer eine der wesentlichen Todesursachen weltweit darstellt. Hier kann bereits auf eine evidenzbasierte Datenlage zurückgegriffen werden, die eine schädliche Wirkung einer erhöhten Kochsalzzufuhr belegt. Gegenstand aktueller Forschung sind die Regulation der Salzspeicher in der Haut sowie die Beeinflussung des Mikrobioms im Darm durch Kochsalz.

Abstract

Sodium chloride, a vital mineral resource, should be consumed not too much. The DEGS-Study (German Adult Health Survey), which focuses on documenting the salt intake of the German population, shows that the median salt intake of 70% of the participating women and 80% of the men lies above the DGE’s (German Society for Nutrition) recommended daily dose of 6 g. The WHO similarly recommends a salt consumption of no more than 5 g per day (approximately a teaspoon of salt) as a target value in its guidelines. Salt plays an important role in regulating the renin angiotensin pathway (also known as the RAA pathway), which, in turn, maintains volume, sodium chloride and blood pressure homeostasis within the body. Understanding this process becomes increasingly important, as arterial hypertension is still a significant cause of death worldwide. The data of numerous large, randomized, controlled studies is evidence for the harmful effects of a high sodium chloride consumption on the human body. Current research is focused on further understanding the regulation of salt depots in the skin as well as the effect of sodium chloride on the microbiome of the intestinal tract.



Publication History

Article published online:
26 August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Gekle M. Niere, Wasser- und Mineralhaushalt. In: Gekle M, Wischmeyer E, Gründer S, Petersen M, Schwab A, Klöcker N, Markwardt F, Marti H, Pape HC. Taschenlehrbuch Physiologie, 2. Aufl. Stuttgart: Thieme; 2015: 388-398
  • 2 de Wardener HE, He FJ, Macgregor GA. Plasma sodium and hypertension. Kidney Int 2004; 66: 2454-2466
  • 3 Kurtz TW, DiCarlo SE, Pravenec M. et al. An Alternative Hypothesis to the widley held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int 2016; 90: 965-973
  • 4 Selvarajah V, Mäki-Petäjä KM, Pedro L. et al. Mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor C and blood pressure. Hypertension 2017; 70: 930-937
  • 5 Rakova N, Jüttner K, Dahlmann A. et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab 2013; 17: 125-131
  • 6 Wu C, Yosef N, Thalhamer T. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496: 513-517
  • 7 Machnik A, Neuhofer W, Jantsch J. et al. Macrophages regulate salt-dependant volume and blood pressure by a vascular endothelial growth factor-c-dependant buffering mechanism. Nat Med 2009; 15: 545-552
  • 8 Wiig H, Schröder A, Neuhofer W. et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 2013; 123: 2803-2815
  • 9 Zinman B, Wanner C, Lachin JM. et al. EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373: 2117-2128
  • 10 Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 2015; 12: 78-89
  • 11 Bandak G, Kashani KB. Chloride in intensive care units: a key electrolyte. F1000Res 2017; 6: 1930 DOI: 10.12688/f1000research.11401.1.. eCollection 2017
  • 12 WHO (World Health Organization). Guideline: sodium intake for adults and children. WHO, Department of Nutrition for Health and Development, Geneva 2012. Im Internet: https://www.who.int/publications/i/item/9789241504836; Stand: 11.06.2024
  • 13 He FJ, Tan M, Ma Y. et al. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75: 632-647 DOI: 10.1016/j.jacc.2019.11.055.. (PMID: 32057379)
  • 14 Strohm D, Boeing H, Leschik-Bonnet E. et al. Wissenschaftliche Stellungnahme der Deutschen Gesellschaft für Ernährung e. V. (DGE) zur Speisesalzzufuhr in Deutschland, gesundheitliche Folgen und resultierende Handlungsempfehlung. Ernährungsumschau 2016; 63: 1-12
  • 15 MRI (Max Rubner-Institut) (Hg). Nationale Verzehrsstudie II. Karlsruhe 2008. Im Internet: https://www.mri.bund.de/de/institute/ernaehrungsverhalten/forschungsprojekte/nvsii/; Stand: 11.06.2024
  • 16 Krems C, Walter C, Heuer T, Hoffmann I. Lebensmittelverzehr und Nährstoffzufuhr – Ergebnisse der Nationalen Verzehrsstudie II. In: Deutsche Gesellschaft für Ernährung, Hrsg. 12. Ernährungsbericht. 2012. Bonn: Deutsche Gesellschaft für Ernährung; 2012: 40-85
  • 17 Heseker H, Mensink GB. Lebensmittelverzehr und Nährstoffzufuhr im Kindes- und Jugendalter. Ergebnisse aus den beiden bundesweit durchgeführten Ernährungsstudien VELS und EsKiMo. In: Deutsche Gesellschaft für Ernährung (Hg). Ernährungsbericht 2008. Bonn 2008 49-93
  • 18 Alexy U, Cheng G, Libuda L. et al. 24 h-Sodium excretion and hydration status in children and adolescents – results of the DONALD Study. Clin Nutr 2012; 31: 78-84
  • 19 Hipgrave DB, Chang S, Li X. et al. Salt and sodium intake in China. JAMA. 2016; 315: 703-705
  • 20 Webster JL, Dunford EK, Hawkes C. et al. Salt reduction initiatives around the world. J Hypertens 2011; 29: 1043-1050
  • 21 Weltgesundheitsorganisation, Regionalbund für Europa. Aktionsplan zur Umsetzung der Europäischen Strategie zur Prävention und Bekämpfung nichtübertragbarer Krankheiten (2012–2016), Baku 2011. Im Internet: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iris.who.int/bitstream/handle/10665/352661/9789289002714-ger.pdf?sequence=1&isAllowed=y; Stand: 11.06.2024
  • 22 He FJ, MacGregor GA. Importance of salt in determining blood pressure in children. Meta-analysis of controlled trials. Hypertension 2006; 48: 861-869
  • 23 Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2020; 12: CD004022 DOI: 10.1002/14651858.CD004022.pub5.
  • 24 Sacks FM, Svetkey LP, Vollmer WM. et al. DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001; 344: 3-10
  • 25 Juraschek SP, Miller ER, Weaver CM. et al. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol 2017; 70: 2841-2848
  • 26 Mozaffarian D, Fahimi S, Singh GM. et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med 2014; 371: 624-634
  • 27 Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation 2008; 117: 3171-3180
  • 28 Campbell NR, Willis KJ, L'Abbe M. et al. Canadian initiatives to prevent hypertension by reducing dietary sodium. Nutrients 2011; 3: 756-764
  • 29 WHO (World Health Organization). Hrsg. Effects of reduced sodium intake on cardiovascular disease, coronary heart disease and stroke. Geneva: WHO Press; 2012
  • 30 Nierenberg JL, Li C, He J. et al. Blood pressure genetic risk score predicts blood pressure responses to dietary sodium and potassium: The GenSalt study (Genetic Epidemiology Network of Salt Sensitivity). Hypertension 2017; 70: 1106-1112
  • 31 Hussain M, Awan FR, Gujjar A. et al. A case control association study of ACE gene polymorphism (I/D) with hypertension in Punjabi population from Faisalabad, Pakistan. Clin Exp Hypertens 2018; 40: 186-191
  • 32 Skrabal F, Herholz H, Neumayr M. et al. Salt sensitivity in humans is linked to enhanced sympathetic responsiveness and to enhanced proximal tubular reabsorption. Hypertension 1984; 6: 152-158
  • 33 Hooper L, Bartlett C, Smith GD. et al. Advice to reduce dietary salt for prevention of cardiovascular disease. Cochrane Database Syst Rev 2004; CD003656
  • 34 Strazzullo P, D‘Elia L, Kandala NB. et al. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 2009; 339: b4567
  • 35 WCRF (World Cancer Research Fund), AICR (American Institute for Cancer Research), Hrsg. Policy and action for cancer prevention. Food, nutrition, and physical activity: a global perspective. Washington DC, 2009. Im Internet: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.wcrf.org/wp-content/uploads/2020/12/Policy_Report.pdf; Stand: 11.06.2024
  • 36 D‘Elia L, Rossi G, Ippolito R. et al. Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies. Clin Nutr 2012; 4: 489-498
  • 37 Kim Y, Kim HY, Kim JH. Associations Between Reported Dietary Sodium Intake and Osteoporosis in Korean Postmenopausal Women: The 2008-2011 Korea National Health and Nutrition Examination Survey. Asia Pac J Public Health 2017; 29: 430-439
  • 38 Wilck N, Matus MG, Kearney SM. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585-589
  • 39 Dong Z, Liu Y, Pan H. et al. The Effects of High-Salt Gastric Intake on the Composition of the Intestinal Microbiota in Wistar Rats. Med Sci Monit 2020; e922160 DOI: 10.12659/MSM.922160.
  • 40 Pashayee-Khamene F, Hajimohammadebrahim-Ketabforoush M, Saber-Firoozi M. et al. Salt consumption and mortality risk in cirrhotic patients: results from a cohort study. J Nutr Sci 2022; 11: e99 DOI: 10.1017/jns.2022.69.
  • 41 Liu T, Zhang Q, Xiao X. et al. High salt intake combined with hypertension elevated the risk of primary liver cancer: a prospective cohort study. Front Oncol 2022; 12: 916583 DOI: 10.3389/fonc.2022.916583.
  • 42 Li L, Mi Y, Xu M. et al. Influence of Dietary Salt Intake on T2D Treatment. Front Endocrinol (Lausanne) 2022; 13: 926143 DOI: 10.3389/fendo.2022.926143.
  • 43 Mohan D, Yap KH, Reidpath D. et al. Link Between Dietary Sodium Intake, Cognitive Function, and Dementia Risk in Middle-Aged and Older Adults: A Systematic Review. J Alzheimers Dis 2020; 76: 1347-1373 DOI: 10.3233/JAD-191339.
  • 44 Yin X, Rodgers A, Perkovic A. et al. Effects of salt substitutes on clinical outcomes: a systematic review and meta-analysis. Heart 2022; 108: 1608-1615 DOI: 10.1136/heartjnl-2022-321332.