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ABSTRACT

Purpose To evaluate the effect of a vendor-agnostic deep

learning denoising (DLD) algorithm on diagnostic image qual-

ity of non-contrast cranial computed tomography (ncCT)

across five CT scanners.

Materials and Methods This retrospective single-center

study included ncCT data of 150 consecutive patients (30 for

each of the five scanners) who had undergone routine ima-

ging after minor head trauma. The images were reconstruc-

ted using filtered back projection (FBP) and a vendor-agnostic

DLD method. Using a 4-point Likert scale, three readers per-

formed a subjective evaluation assessing the following quality

criteria: overall diagnostic image quality, image noise, gray

matter-white matter differentiation (GM-WM), artifacts,

sharpness, and diagnostic confidence. Objective analysis in-

cluded evaluation of noise, contrast-to-noise ratio (CNR), sig-

nal-to-noise ratio (SNR), and an artifact index for the posterior

fossa.

Results In subjective image quality assessment, DLD showed

constantly superior results compared to FBP in all categories

and for all scanners (p < 0.05) across all readers. The objective

image quality analysis showed significant improvement in

noise, SNR, and CNR as well as for the artifact index using

DLD for all scanners (p < 0.001).

Conclusion The vendor-agnostic deep learning denoising al-

gorithm provided significantly superior results in the subjec-

tive as well as in the objective analysis of ncCT images of pa-

tients with minor head trauma concerning all parameters

compared to the FBP reconstruction. This effect has been ob-

served in all five included scanners.

Key Points

▪ Significant improvement of image quality for 5 scanners

due to the vendor-agnostic DLD

▪ Subjects were patients with routine imaging after minor

head trauma

▪ Reduction of artifacts in the posterior fossa due to the DLD

▪ Access to improved image quality even for older scanners

from different vendors

Citation Format

▪ Kapper C, Müller L, Kronfeld A et al. Value of vendor-ag-

nostic deep learning image denoising in brain computed

tomography: A multi-scanner study. Fortschr Röntgenstr

2024; DOI 10.1055/a-2290-4781

ZUSAMMENFASSUNG

Ziel Auswertung der Wirkung eines herstellerunabhängigen

Deep Learning Denoising-Algorithmus (DLD) auf die diagnos-

tische Bildqualität kontrastloser kranialer Computertomogra-

fie (ncCT) für fünf CT-Scanner im Vergleich.

Material und Methoden Diese retrospektive monozentrische

Studie schloss ncCT-Daten von 150 konsekutiven Patienten

(30 für jeden der fünf Scanner) ein, bei denen nach einem

leichten Kopftrauma eine Routinebildgebung erfolgt war. Die

Bilder wurden mittels gefilterter Rückprojektion (FBP) und ei-
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ner herstellerunabhängigen DLD-Methode rekonstruiert. An-

hand einer 4-Punkte-Likert-Skala führten drei Reader eine

subjektive Bewertung durch, bei der die Qualitätskriterien all-

gemeine diagnostische Bildqualität, Bildrauschen, Differen-

zierung zwischen grauer und weißer Substanz (GM-WM), Ar-

tefakte, Bildschärfe und diagnostische Sicherheit bewertet

wurden. Die objektive Analyse umfasste die Bewertung des

Rauschens, des Kontrast-Rausch-Verhältnisses (CNR), des Si-

gnal-Rausch-Verhältnisses (SNR) und einen Artefaktindex für

die Fossa cranii posterior.

Ergebnisse Bei der subjektiven Auswertung der Bildqualität

zeigte DLD im Vergleich zu FBP in allen Bewertungskategorien

und für alle Scanner konstant bessere Ergebnisse (p < 0,05) bei

allen Readern. Die objektive Bildqualitätsanalyse zeigte bei al-

len Scannern eine signifikante Verbesserung des Rauschens,

der SNR und der CNR sowie des Artefaktindexes durch das

DLD (p < 0,001).

Schlussfolgerung Der herstellerunabhängige Deep Learning

Denoising-Algorithmus lieferte im Vergleich zur FBP-Rekon-

struktion bei allen Parametern sowohl in der subjektiven als

auch in der objektiven Analyse deutlich bessere Ergebnisse

für ncCT-Bilder von Patienten nach einem leichten Schädel-

trauma. Dieser Effekt wurde bei allen fünf einbezogenen

Scannern beobachtet.

Kernaussagen

▪ Hochsignifikante Verbesserung der Bildqualität für alle

5 Scanner durch das herstellerunabhängige DLD

▪ Eingeschlossen wurden Patienten mit Routinebildgebung

nach leichtem Schädeltrauma

▪ Verringerung von Artefakten in der hinteren Schädelgrube

durch das DLD

▪ Zugang zu verbesserter Bildqualität auch für ältere Geräte

unterschiedlicher Hersteller möglich

Introduction

Due to fast accessibility and short examination time, non-contrast
computed tomography (ncCT) has an outstanding importance,
especially in the field of head trauma diagnostics because of its
high sensitivity for the detection of intracranial hemorrhage [1,
2]. Yet, satisfying image quality, depiction of the gray and white
matter, and thus reliable detection of small pathologies and le-
sions in cranial ncCT is rendered more difficult due to image noise
and limited intrinsic differences in the brain parenchyma [3],
especially while trying to leave the radiation dose at a reasonable
level. With a constantly rising number of CT scans nationally and
internationally [4, 5, 6], and thus increased accumulated radiation
exposure and the risks of neoplasia that arise from it [7], new
methods to reduce image noise, to increase image quality, and
to enable a reduction in dose exposure for the patients have
been introduced. Filtered back projection (FBP) has been a stand-
ard for CT image reconstruction for over 40 years due to its com-
putational efficiency [8, 9]. However, it is limited in its potential
for the improvement of image quality, dose, and noise reduction
because of an increase in noise proportional to the inverse square
root of the radiation dose [10]. A further step in attempts to im-
prove CT imaging is iterative reconstruction (IR), which renders
higher image quality and significant noise reduction compared
to FBP [3, 11, 12] but has recently been challenged by new deep
learning denoising (DLD) algorithms for CT image reconstruction,
which are already showing superior results compared to FBP as
well as IR [8]. Several studies have examined the effect of these
new algorithms compared to conventional reconstruction meth-
ods, concentrating on specific body regions (e. g. head, lung, liv-
er) using vendor-specific solutions [3, 13, 14, 15, 16, 17]. Yet,
these denoising algorithms are limited to certain scanners from
the same vendor and thereby exclude older scanners and scan-
ners by others. Therefore, the evaluation of vendor-agnostic
methods presents an opportunity to implement solutions to re-
duce noise and thus improve image quality for a large range of

scanners independent of their age or producer. In first studies,
the vendor-agnostic DLD we used for this study has already shown
promising results for phantoms [18] as well as several body re-
gions [19, 20, 21, 22, 23]. Yet, up to now, the important field of
head CT has not been investigated using vendor-agnostic solu-
tions. Therefore, the purpose of the study was to assess the ability
of a vendor-agnostic DLD algorithm to denoise ncCT images of
the brain, to improve the soft-tissue contrast compared to the
corresponding FBP reconstructed series, and to produce compar-
able results for various CT scanners of different brands.

Materials and Methods

Subjects

In total, 150 patients (67 women, 83 men, median age: 79, age
range: 19–95) were enrolled. All of them underwent an examina-
tion with the standard non-contrast head protocol (▶ Table 1) in
our institutions after a minor head trauma. The examinations
were executed on 5 different scanners (30 consecutive patients
per scanner). Underage patients, patients with polytrauma and
after surgical and interventional in-brain procedures were exclud-
ed beforehand.

Scanners and acquisition parameters

Five different scanners were included, Aquilion Precision (Canon
Medical Systems Corporation, Japan; Scanner 1), Aquilion 32 (Ca-
non Medical Systems Corporation, Japan; Scanner 2), iCT 256 (Phi-
lips Healthcare, Cleveland, OH, USA; Scanner 3), Brilliance 16 (Phi-
lips Healthcare, Cleveland, OH, USA; Scanner 4), and Brilliance 64
(Philips Healthcare, Cleveland, OH, USA; Scanner 5). All the ima-
ges in all the scanners were generated using a tube voltage of
120 kV and a tube current depending on automatic modulation,
which resulted in a tube current (± standard deviation [SD]) of
262.70 ± 28.43 mA for Scanner 1, 176.00 ± 12.00 mA for Scanner
2, 169.80 ± 8.19 mA for Scanner 3, 128.00 ± 8.18 mA for Scanner
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4, and 227.60 ± 7.72 for Scanner 5. All scanners used a 512 × 512
matrix. For more details, see ▶ Table 1.

Denoising method

FBP was chosen as the standard reconstruction mode for this
study to enable comparability. IR was not available on scanners
2, 4, and 5 and was therefore excluded. A commercially available
and FDA approved DLD (ClariCT.AI, ClariPi, South Korea) [24] was
applied to the FBP reconstructed images. It was developed as a
denoising solution using a U-net based convolutional neural net
[19], trained by taking a noise-added CT image as an input to pro-
duce an original CT image as an output. DLD was trained with di-
verse vendor-specific low-dose CT images from different vendors
to acquire a generalized learning and vendor-agnostic denoising
capability [10]. The training dataset consisted of over one million
CT images encompassing 2,100 different combinations of scan
and reconstruction conditions including varying kVp, mAs, auto-
matic exposure control, slice thickness, contrast enhancement,
and convolution kernels with 24 scanner models of 4 different CT
manufacturers (GE Healthcare, Siemens Healthineers, Philips
Healthcare, and Canon Medical): 80 % of the dataset was used for
model training while the remaining 20% were used for validation.
The DLD focuses exclusively on tackling the task of noise reduc-
tion in the image domain, distinguishing it from the broader
scope of CT deep learning reconstruction (DLR). The DLR was de-
signed to handle the entire reconstruction process, which encom-
passes photon starvation compensation, beam hardening correc-
tion, the transformation of sinogram to CT images, and noise
reduction [25]. In comparison, the DLD specifically targets noise
reduction, honing its network capacity to this single task. This fo-
cused approach of the DLD ensures that it does not introduce the
kinds of distortions or artifacts that are occasionally observed with
DLR [26].

Image quality assessment

Subjective image evaluation

Subjective image quality was assessed independently by three
radiologists (Reader 1: SA, Reader 2: MAM: both 6 years of experi-
ence in the field of neuroradiology, Reader 3: NG: 4 years), each
trained with ten separate series selected beforehand as examples
that were not included in the study. The readers were blinded to
the reconstruction mode, scanner type, and the results of the ob-
jective image quality analysis. Parameters were overall image
quality (general appearance), image noise, sharpness (depiction
of the boundaries of the brain), brain structures (gray matter-
white matter differentiation), overall artifacts and diagnostic con-
fidence (ability to give a reliable diagnosis). They were evaluated
using the following 4-point Likert scale: 1 = non-diagnostic;
2 = suboptimal but diagnostic; 3 = good; 4 = excellent.

▶ Fig. 1 Examples of the positioning of the ROIs on axial CT images
of the a semioval center and b basal ganglia for objective analysis.

▶ Table 1 Scanning parameters for scanners 1–5.

Scanner 1 Scanner 2 Scanner 3 Scanner 4 Scanner 5

Scanner Canon/Toshiba
Aquilion Precision

Canon/Toshiba
Aquilion 32

Philips iCT 256 Philips Brilliance
16

Philips Brilliance
64

Manufacturer Canon Medical Sys-
tems Corporation;
Japan

Canon Medical Sys-
tems Corporation;
Japan

Philips Health-
care, Cleveland,
OH, USA

Philips Health-
care, Cleveland,
OH, USA

Philips Health-
care, Cleveland,
OH, USA

Scan mode Axial Axial Axial Axial Axial

Tube voltage [kV] 120 120 120 120 120

Mean tube current
[mA] ± SD

262.70 ± 28.43 176.00 ± 12.00 169.80 ± 8.19 128.00 ± 8.18 227.60 ± 7.72

Beam collimation 0.5 × 80mm 0.5 × 32mm 0.625 × 16mm 4×4.5mm 0.625 × 16mm

Rotation time [s] 1.0 0.75 0.75 0.75 0.5

Field of view 210 210 Depending on
patient

Depending on
patient

Depending on
patient

Matrix 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512

Slice thickness 1mm 1mm 1mm 1mm 1mm
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▶ Fig. 2 Direct visual comparison of all 5 scanners (columns 1–5) and of a FBP vs. b DLD in 3 levels: semioval center, level of the basal ganglia and
posterior fossa. 1 = Scanner 1, 2 = Scanner 2, 3 = Scanner 3, 4 = Scanner 4, 5 = Scanner 5.
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Objective image evaluation

To evaluate noise, signal-to-noise ratio (SNR), and contrast-to-
noise ratio (CNR) of white matter (WM) and gray matter (GM) re-
gions, we used rectangular regions of interest (ROIs). The ROIs
were drawn in the semioval center (for the measurement of
SNR), the thalamus, the lentiform nucleus, and the adjacent white
matter in the internal capsule (for the measurement of CNR), for
each location, where possible, left and right (▶ Fig. 1). The exact
position of the ROIs was copied automatically for the correspond-
ing FBP and DLD images. The algorithm to determine the local
noise is based on the work of Anam et al. [27] and Chun et al.
[28] and is described by Altmann et al. in Ref. [29]. The goal is to
determine noise that is not affected by tissue structures or gray
value trends. Therefore, a sliding window of 5mm x 5mm is ap-
plied to the previously selected ROI. In this way, borders in the
ROI were detected by a Sobel operator. If no anatomical border
can be found at the present sliding window position, the region
is detrended by a 2D polynomial fit of second order [30] and the
standard deviation (SD) of the gray values is calculated. The mini-
mum standard deviation of the whole ROI out of all window posi-
tions was defined as noise. The noise and the mean CT density

[HU] in the corresponding square were used for the calculation
of SNR by dividing CT density by SD. CNR was calculated with the
following formula:

Furthermore, we evaluated a reduction of artifacts in the pos-
terior fossa by setting ROIs of 200 ± 3mm2 in the image with the
most prominent artifacts. The SD in the ROI was defined as the ar-
tifact index [13].

Radiation dose

Radiation dose descriptors reported from each scanner were com-
puted tomography dose index (CTDIvol) and dose length product
(DLP); the mean effective dose was estimated from the DLP using
the conversion factor of 0.002 [mSv/mGycm] following Shrimpton
et al. [31]. CTDIvol: Scanner 1: 38.5 ± 4.1mGy, Scanner 2: 45.3 ±
3.1mGy, Scanner 3: 45.7 ± 6.7mGy, Scanner 4: 46.2 ± 2.3mGy,
Scanner 5: 58,3 ± 2.0 mGy; DLP: Scanner 1: 760 ± 90 mGy*cm,
Scanner 2: 783 ± 70 mGy*cm, Scanner 3: 894 ± 160 mGy*cm,
Scanner 4: 830 +/ 100 mGy*cm, Scanner 5: 974 ± 56 mGy*cm;
mean effective dose ± SD: Scanner 1: 1.5 ± 0.2mSv, Scanner 2:
1.6 ± 0.15mSv, Scanner 3: 1.8 ± 0.3mSv, Scanner 4: 1.7 ± 0.2mSv,
Scanner 5: 2 ± 0.1mSv.

▶ Fig. 3 Zoomed in comparison of all 5 scanners (1 = Scanner 1,
2 = Scanner 2, 3 = Scanner 3, 4 = Scanner 4, 5 = Scanner 5) and of
a FBP vs. b DLD.

▶ Fig. 4 Patient example: 91-year-old female patient, control CT on
scanner 5 after head trauma, anticoagulants in medication.
Zoomed in comparison a FBP vs. b DLD.

CNR =
CT densityGM – CT densityWM

noiseWM
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Statistical analysis

All statistical analyses were performed with R 4.1.3 (R Foundation
for Statistical Computing, Vienna, Austria.).

For the data raised in the subjective quality analysis, we per-
formed a Wilcoxon-signed rank test where a p-value of < 0.05 was
considered significant. Furthermore, the inter-observer variability
was determined with intraclass correlation. An intraclass correlation
coefficient (ICC) of up to 0.2 was considered to be very poor agree-
ment, 0.2–0.4 poor agreement, 0.4–0.6 fair agreement, 0.6–0.8
good agreement, and > 0.8 almost perfect agreement.

The data acquired in the objective analysis showed no normal
distribution applying the Shapiro-Wilk test. Therefore, compara-
tive analyses were performed using the Wilcoxon signed-rank
test. A p-value of < 0.05 was considered statistically significant.
For the comparison of the effect size of the DLD on the images
from the different manufacturers, we used Cohen’s d regarding
noise, SNR, and CNR. A d-value of 0.2–0.5 was deemed a small ef-
fect, between 0.5 and 0.8 a medium one, and > 0.8 was deemed a
high effect.

▶ Fig. 5 Boxplot and significance levels for noise, SNR, and CNR compared between all 5 scanners: A= Scanner 1, B= Scanner 2, C = Scanner 3,
D= Scanner 4, E= Scanner 5, FBP vs. DLD; for CNR, mean values across the lentiform nucleus, thalamus, and left and right were used for clarity.
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Results

Subjective quality analysis

The subjective quality analysis showed significantly superior values
for the DLD compared to the FBP reconstructions across all scan-
ners and all readers for overall image quality, noise, sharpness,
brain structures, artifacts, and diagnostic confidence (each
p < 0.001). DLD images were rated good to excellent, whereas val-
ues for FBP ranged from non-diagnostic to excellent with the large
majority being suboptimal but diagnostic. Scanner 1 tended to
have the best ratings of the five scanners included across all asses-
sed criteria. ▶ Table 2 gives a detailed overview of the reading re-
sults subdivided into the three readers and five scanners. Inter-
reader agreement was good for image quality (ICC= 0.661), noise
(ICC = 0.624), brain structures (ICC = 0.66), and diagnostic confi-
dence (ICC= 0.616), and fair for sharpness (ICC= 0.407) and for ar-
tifacts (ICC = 0.446). Patient examples are given in ▶ Fig. 2, ▶ Fig. 3
and ▶ Fig. 4. Due to the small number of pathologies included as
described above, the effect of the DLD on the depiction of these
pathologies was not evaluated.

Objective quality analysis

Compared to the FBP images, noise was reduced and SNR as well
as CNR were improved significantly (p < 0.001) when the DLD was
applied. This has been observed consistently for every scanner in-
dependent of the different positions of the ROIs (internal capsule
for SNR, lentiform nucleus, thalamus for CNR) (▶ Table 3,
▶ Fig. 5). The artifact index evaluated in the posterior fossa
showed a significant reduction in all scanners (each p < 0.001) for
the DLD compared to FBP (▶ Table 3, ▶ Fig. 6). Cohen’s d showed
a large effect size for all the scanners with respect to noise, SNR,
and CNR (Scanner 1 > 4.2; Scanner 2 > 4.3; Scanner 3 > 1.5; Scan-
ner 4 > 3.2; Scanner 5 > 1.6 for noise, SNR and CNR) (▶ Table 4).
Yet, scanners 1, 2 and 4 seemed to profit most from the DLD.

Discussion

The purpose of this study was to evaluate the effect of a vendor-
agnostic DLD solution on image quality compared to FBP recon-
struction across different CT scanners by different manufacturers
in the field of brain ncCT imaging.

Regarding the results of the subjective as well as the objective
image quality assessment, the addition of DLD to FBP significantly
outperformed FBP only, providing a reduction of noise and of the
artifact index in the posterior fossa and higher image quality on
every scanner.

We find our results to be in line with existing studies concern-
ing the use of DLD algorithms for brain ncCT [3, 13, 14, 15, 32]
(vendor-specific or not commercially available [32]) as well as for
examinations of other regions of the body [10, 16, 17, 19, 20, 21,
22, 23] (vendor-specific and vendor-agnostic). All of them mana-
ged to detect superior image quality and noise reduction
throughout. Kim et al. [13] reported a reduction in artifacts –
which we also found – in the posterior fossa, all using DLD com-
pared to FBP and/or compared to IR. We did not include IR in this
study, because it was not available for every scanner, especially
not for the older ones. Also, it was important for us to guarantee
the comparability between the five scanners (for which FBP recon-
structed images were a common base) in order to be able to de-

▶ Fig. 6 Boxplot and significance levels for the artifact index compared between all 5 scanners: A= Scanner 1, B= Scanner 2, C= Scanner 3,
D= Scanner 4, E= Scanner 5, FBP vs. DLD.

▶ Table 4 Effect sizes of the DLD for the 5 scanners (Cohen’s d). A
value of d> 0.8 was deemed a high effect.

Noise SNR CNR

Scanner 1 4.2 4.4 4.2

Scanner 2 4.9 5.1 4.3

Scanner 3 1.5 1.6 1.6

Scanner 4 3.2 3.3 3.3

Scanner 5 1.6 2.1 2.1
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termine whether a large variety of scanners can profit from the
use of vendor-agnostic DLD solutions. The results obtained in the
subjective and objective analysis seem to support this thesis. Yet,
in this study, we only included preexisting CT images of the brain
that were acquired using the standard dose protocols for head
trauma. Looking at the effect size and the quality gained thanks
to the DLD, that leaves the possibility for further investigation in
dose reduction and application of vendor-agnostic DLD methods
on low and ultra-low dose cranial CT images, as was already
shown for other regions of the body, for example, the lumbar
spine [20]. Due to superior image quality showing significantly su-
perior gray matter-white matter differentiation, pathologies or
those with slight differences in density in the brain parenchyma
might be detected more easily and reliably even in non-contrast
brain CT examinations. For example, neoplasia and strokes [32]
come to mind. These changes in the depiction of parenchymal
contrast could also influence subjective scoring systems like
ASPECTS (Alberta stroke program early CT score), which depend
essentially on the visibility of those slight differences between
gray and white matter. To determine to which degree DLDs affect
their precision, further investigation is needed. Based on the an-
swer to our main question in this study, an implication for practi-
cal use can be envisioned: The vendor-agnostic DLD methods al-
low for the possibility to have just one denoising engine in
hospitals or radiological centers with more than one scanner,
scanners from different vendors, and older scanners, while pro-
viding reliably good image quality.

This study has several limitations. The groups compared in this
retrospective study were relatively small with 30 patients per
scanner, and we only compared scanners by two of the leading
companies in CT imaging. Due to the lack of IR in some of the
scanners, we were not able to include this reconstruction method.
The study focused on image quality assessment in a cohort of pa-
tients with a very low likelihood of pathological findings. Patholo-
gies were therefore not analyzed separately. Apart from that, due
to the retrospective study design, we face a potential selection
bias and, by only using preexisting CT examinations with a fixed
tube voltage of 120 kV, we are only able to speculate about the
effectiveness of this DLD for dose reduction across the five scan-
ners even though a benefit for low-dose CT images of the spine
has already been proven [20]. These aspects need to be evaluated
in further investigations. Sharpness as well as artifacts showed
only fair agreement, which could be attributed to individual inter-
nal standards of the readers for the respective parameters.

The use of DLD in a clinical setting requires certain computa-
tional infrastructure (especially GPU).

Conclusion

The vendor-agnostic deep learning denoising algorithm provided
significantly superior results in the subjective as well as in the ob-
jective analysis of ncCT images of patients with minor head trau-
ma concerning all parameters compared to the FBP reconstruc-
tion. This effect has been observed in all five included scanners.

Clinical relevance

▪ Due to the DLD, a significant improvement in image quality
was achieved compared to FBP.

▪ Vendor-agnostic DLD methods make it possible to have just
one denoising engine in hospitals or radiological centers with
more than one scanner, scanners from different vendors, and
older scanners, while providing reliably good image quality.

▪ Further investigation in the field of dose reduction and regard-
ing specific pathologies is conceivable.
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