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ABSTRACT

Purpose The aim of this study was to explore the potential of

weak supervision in a deep learning-based label prediction

model. The goal was to use this model to extract labels from

German free-text thoracic radiology reports on chest X-ray

images and for training chest X-ray classification models.

Materials and Methods The proposed label extraction model

for German thoracic radiology reports uses a German BERT

encoder as a backbone and classifies a report based on the

CheXpert labels. For investigating the efficient use of manually

annotated data, the model was trained using manual annota-

tions, weak rule-based labels, and both. Rule-based labels

were extracted from 66071 retrospectively collected radiology

reports from 2017–2021 (DS 0), and 1091 reports from 2020–

2021 (DS 1) were manually labeled according to the CheXpert

classes. Label extraction performance was evaluated with

respect to mention extraction, negation detection, and uncer-

tainty detection by measuring F1 scores. The influence of the

label extraction method on chest X-ray classification was

evaluated on a pneumothorax data set (DS 2) containing

6434 chest radiographs with associated reports and expert

diagnoses of pneumothorax. For this, DenseNet-121 models

trained on manual annotations, rule-based and deep learning-

based label predictions, and publicly available data were

compared.

Results The proposed deep learning-based labeler (DL) per-

formed on average considerably stronger than the rule-based

labeler (RB) for all three tasks on DS 1 with F1 scores of 0.938

vs. 0.844 for mention extraction, 0.891 vs. 0.821 for negation

detection, and 0.624 vs. 0.518 for uncertainty detection. Pre-

training on DS 0 and fine-tuning on DS 1 performed better

than only training on either DS 0 or DS 1. Chest X-ray pneu-

mothorax classification results (DS 2) were highest when

trained with DL labels with an area under the receiver operat-

ing curve (AUC) of 0.939 compared to RB labels with an AUC

of 0.858. Training with manual labels performed slightly

worse than training with DL labels with an AUC of 0.934. In

contrast, training with a public data set resulted in an AUC of

0.720.

Conclusion Our results show that leveraging a rule-based

report labeler for weak supervision leads to improved labeling

performance. The pneumothorax classification results

demonstrate that our proposed deep learning-based labeler

can serve as a substitute for manual labeling requiring only

1000 manually annotated reports for training.

Key Points

▪ The proposed deep learning-based label extraction model

for German thoracic radiology reports performs better

than the rule-based model.

▪ Training with limited supervision outperformed training

with a small manually labeled data set.

▪ Using predicted labels for pneumothorax classification

from chest radiographs performed equally to using

manual annotations.
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ZUSAMMENFASSUNG

Ziel Das Ziel dieser Studie war es, das Potenzial der schwachen

Supervision in einem auf Deep Learning basierenden Modell zur

Extraktion von Labels zu untersuchen. Die Motivation bestand

darin, dieses Modell zu verwenden, um Labels aus deutschen

Freitext-Thorax-Radiologie-Befunden zu extrahieren und damit

Röntgenthorax-Klassifikationsmodelle zu trainieren.

Material und Methoden Das vorgeschlagene Modell zur

Label-Extraktion für deutsche Thorax-Radiologie-Befunde ver-

wendet einen deutschen BERT-Encoder als Grundlage und

klassifiziert einen Befund basierend auf den CheXpert-Labels.

Um den effizienten Einsatz von manuell annotierten Daten zu

untersuchen, wurde das Modell mit manuellen Annotationen,

regelbasierten Labels und beidem trainiert. Regelbasierte

Labels wurden aus 66.071 retrospektiv gesammelten Radio-

logie-Befunden von 2017 bis 2021 (DS 0) extrahiert, und

1091 Befunde von 2020 bis 2021 (DS 1) wurden gemäß den

CheXpert-Klassen manuell annotiert. Die Leistung der Label-

Extraktion wurde anhand der Erfassung von Erwähnungen,

der Erkennung von Negationen und der Erkennung von Unsi-

cherheiten anhand von F1-Scores bewertet. Der Einfluss der

Label-Extraktionsmethode auf die Röntgenthorax-Klassifika-

tion wurde anhand eines Pneumothorax-Datensatzes (DS 2)

mit 6434 Thoraxaufnahmen und entsprechenden Befunden

evaluiert. Hierbei wurden DenseNet-121-Modelle, die mit

manuellen Annotationen, regelbasierten und durch Deep

Learning-basierten Label-Vorhersagen sowie öffentlich ver-

fügbaren Daten trainiert wurden, verglichen.

Ergebnisse Der vorgeschlagene auf Deep Learning basie-

rende Labeler (DL) zeigte im Durchschnitt für alle drei Aufga-

ben auf DS 1 eine bedeutend bessere Leistung als der regelba-

sierte Labeler (RB) mit F1-Scores von 0,938 gegenüber 0,844

für die Erwähnungserkennung, 0,891 gegenüber 0,821 für die

Negationserkennung und 0,624 gegenüber 0,518 für die

Unsicherheitserkennung. Das Vortraining auf DS 0 und das

Feintuning auf DS 1 lieferte bessere Ergebnisse als nur das

Training auf entweder DS 0 oder DS 1. Die Klassifikationser-

gebnisse für Pneumothorax auf Röntgenthoraces (DS 2)

waren am besten, wenn sie mit DL-Labels trainiert wurden,

mit einer Fläche unter der ROC-Kurve (AUC) von 0,939, im

Vergleich zu RB-Labels mit einer AUC von 0,858. Das Training

mit manuellen Labels war etwas schlechter als das Training

mit DL-Labels mit einer AUC von 0,934. Das Training mit

einem öffentlichen Datensatz führte zu einer AUC von 0,720.

Schlussfolgerung Unsere Ergebnisse zeigen, dass die Nut-

zung eines regelbasierten Labelers für schwache Supervision

zu einer verbesserten Labeling-Leistung führt. Die Klassifika-

tionsergebnisse für Pneumothorax zeigen, dass unser vorge-

schlagener auf Deep Learning basierender Labeler ein mögli-

cher Ersatz für manuelles Labeling ist und nur 1000 manuell

annotierte Befunde für das Training benötigt.

Kernaussagen

▪ Das vorgeschlagene, Deep Learning basierende Modell zur

Label-Extraktion für deutsche Thorax-Radiologie-Befunde

schneidet besser ab als das regelbasierte Modell.

▪ Das Training mit limitierter Supervision schnitt besser ab,

als das Training mit einem kleinen manuell annotierten

Datensatz.

▪ Die Verwendung vorhergesagter Annotationen für die

Pneumothorax-Klassifikation auf Röntgenthoraces schnitt

gleich gut ab gegenüber der manuellen Annotation.

Introduction

Radiologists are in short supply worldwide [1, 2, 3, 4], for exam-
ple, due to an aging population [5], and deep learning models
hold promise for addressing this shortage, for example, as part of
clinical decision-support systems [6, 7]. However, training such
models often requires large data sets [8, 9] that are expensive
and time-consuming to manually label [10, 11]. To reduce the
amount of time for obtaining labeled data sets, automatic label
extraction from radiology reports is a compelling option. Unfortu-
nately, label extraction from radiology reports itself is a challen-
ging task, for example, due to missing annotated data [12].

Recent developments in the natural language processing (NLP)
domain have proposed models that generate dense word vector re-
presentations [13, 14, 15, 16], which have been shown to be
effective in training deep learning models for a wide range of tasks
such as translation [17] or named entity recognition [18]. Similar to
the computer vision domain, these language models can be pre-
trained on a general, large corpus and then fine-tuned on a target
corpus that might be otherwise too small for training [19].

In the medical domain, language models have been success-
fully applied to extract labels from unstructured radiology
reports. Smit et al. improved upon their rule-based labeler for
English radiology reports by using a BERT [15] language model
as a backbone [20]. Similarly, Nowak et al. investigated the use
of BERT for German radiology reports [11]. They compared a
rule-based labeler to a deep learning model, trained with
18000 manually annotated reports, rule-based extracted labels,
and a combination of both.

In this study, we explore the potential of weak supervision of a
deep learning-based label prediction model, using a rule-based
labeler. The general label extraction pipeline is illustrated in
▶ Fig. 1. Our proposed label extraction model takes a German
free-text thoracic radiology report and extracts the corresponding
labels. In contrast to Nowak et al., we focus on the classes of the
CheXpert data set [21], allowing for comparison with previous
studies and pooling of data sets for future studies. More impor-
tantly, we study the effect of extracted labels on downstream
image classification training. Our study builds upon previous
work that used rule-based strategies to extract labels [26]. We
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conduct extensive experiments on a data set of internal radiology
reports and our results demonstrate the effectiveness of our
approach.

Our contributions are: (1) We propose a deep learning-based
label extraction model for German thoracic radiology reports
based on the classes of the CheXpert data set. (2) We demon-
strate that our labeler outperforms a rule-based label extraction
model with respect to label extraction and utility for downstream
applications. (3) We show that a pneumothorax classifier trained
with automatically extracted labels performs equivalently to a
model trained on manual annotations.

Our code is publicly available at https://gitlab.lrz.de/IP/
german-lm-radiology-report-labeler.

Materials and Methods

Data Collection

Data splits and annotation methods of all data sets used through-
out this study are reported in ▶ Table 1. We retrospectively iden-
tified 66071 thoracic radiology reports from 2017 to 2021 in our
institutional PACS (DS 0). As the purpose of this study is to inves-

tigate automatic labeling of clinical reports, the collected reports
represent an unfiltered sample in terms of sex and age. Due to
this, information on sex and age were not extracted. Additionally,
we used 1091 thoracic radiology reports from 2020–2021 that
were manually annotated by a first-year radiology resident from
LMU Klinikum in a previous study [26]. In the following, we refer
to the manually annotated reports as data set 1 (DS 1).

The training and test set label distributions of DS 1 are report-
ed in ▶ Table 2. Since annotated “no finding” reports describe
normal appearing chest radiographs, there are no negative or
uncertain annotations available for this class.

To increase the number of training samples, we favored test
samples with multiple non-blank annotations. We selected 78 of
the 1091 reports of DS 1 for testing. Our selection process
ensured that each class was mentioned by at least five reports,
whenever available. In cases where the entire data set contained
less than five samples for a specific class, half of the samples
were designated for testing. None of the 78 DS 1 reports used
for testing were part of DS 0.

To further test our model, we utilized another internal data set
consisting of 6434 chest radiographs with corresponding reports
[26]. We refer to this data set in the following as data set 2 (DS 2).

▶ Fig. 1 Automatic label prediction from German thoracic radiology reports. A report is processed by the BERT-based labeler and converted to
14 labels, motivated by the categories in the CheXpert data set. A class is labeled as positive, negative, or uncertain. If the class was not mentioned,
it is classified as blank (–).

▶ Table 1 Data sets used in this study. Data set 0 (DS 0) was labeled with a rule-based labeler [26], data set 1 (DS 1) was manually annotated solely
based on radiological reports, and data set 2 (DS 2) was labeled based on the chest radiographs (CXR) and radiological reports.

Split Data Set 0 (DS 0) Data Set 1 (DS 1) Data Set 2 (DS 2)

Training 60071 810 4507

Validation 1000 203 660

Test 5000 78 1267

Total 66071 1091 6434

Annotations Automatic Report, manual CXR + report, manual
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This data set, in contrast to DS 1, contains only binary pneumo-
thorax annotations. However, the annotations are based on both
report and chest radiograph providing a higher label quality. In
the data set, 1568 samples have been labeled as pneumothorax.

Architecture

Based on Smit et al. [20], we used a pre-trained BERT [15] model
as the backbone for our label extraction model. The objective of
the model is to predict the fourteen CheXpert [21] labels: atelec-
tasis, cardiomegaly, consolidation, edema, enlarged cardiome-
diastinum, fracture, lung lesion, lung opacity, pleural effusion,
pleural other, pneumonia, pneumothorax, support devices, and
“no finding” given a German radiology report.

The architecture is illustrated in ▶ Fig. 2. The model receives
the report as an input and assigns one of the classes: blank, posi-
tive, negative, or uncertain to each of the 13 categories, mirroring
a manual annotation. The blank classification represents no men-
tion of the class in the report. For the special case “no finding”,
which corresponds to a normal report, the labeler must predict
only blank or positive.

Wemodified the BERT architecture by using 14 linear heads, as
illustrated in ▶ Fig. 2. Each head is dedicated to capture one of the
14 labels. For transfer learning, we use the pre-trained “bert-base-
German-cased” BERT model1 trained on German texts, such as the
German Wikipedia corpus, with a sequence length of 512 tokens.

To predict the classes of the 14 findings, the radiology reports
were tokenized first. Of all tokenized reports, a single report in
the training data, and none in the test data consisted of more
than 512 tokens. The overflowing report consisted of 579 tokens
and described multiple images. We considered only the first
512 tokens of this report. After tokenization, the reports were
processed by the model. Subsequently, the hidden state of the
class (CLS) token from the final layer was used as the input for
each of the 14 linear heads, predicting the class of each finding
via a softmax.

The model was fine-tuned on a NVIDIA GeForce GTX 1080 for
3 epochs using cross-entropy loss, AdamW [22] optimization with
default parameters (β1 = 0.9, β2 = 0.999), a learning rate of 2e-5,
and a batch size of 8. The individual cross-entropy losses for the
14 observations were aggregated before calculating the final
loss. To monitor model performance, we periodically evaluated
the model on the validation set and selected the best checkpoint
according to the validation cross-entropy loss across all 14 obser-
vations.

Label Extraction (DS 1)

We evaluated our deep learning-based labeler on the three tasks
proposed by the original CheXpert data set: mention extraction,
negation detection, and uncertainty detection. Following the ori-
ginal CheXpert experimental setup, findings labeled as “blank”
were considered as negative for the mention extraction task and
the other classes (“positive”, “negative”, or “uncertain”) as posi-
tive. Regarding negation detection, only the “negative” classifica-

▶ Table 2 Label distributions of manually annotated data sets used in this study. Data set 1 class annotations were labeled based on free text reports
[26]. Data set 2 class annotations were based on reports and radiographs [26]. Enlarged Cardiom. = Enlarged Cardiomediastinum, P = Positive,
U =Uncertain, N =Negative.

Data Set Data Set 1 (DS 1) Data Set 2 (DS 2)

Split Development Test Training Validation Test

Class P U N P U N P N P N P N

Atelectasis 220 54 2 12 13 1 – – – – – –

Cardiomegaly 184 368 266 16 25 25 – – – – – –

Consolidation 205 45 627 23 6 41 – – – – – –

Edema 297 9 521 24 5 34 – – – – – –

Enlarged Cardiom. 223 295 305 22 19 26 – – – – – –

Fracture 63 3 79 9 2 8 – – – – – –

Lung Lesion 44 7 8 5 5 5 – – – – – –

Lung Opacity 278 41 565 28 6 35 – – – – – –

No Finding 1 0 0 1 0 0 – – – – – –

Pleural Effusion 455 45 451 29 11 32 – – – – – –

Pleural Other 57 16 1 7 5 0 – – – – – –

Pneumonia 52 173 649 5 16 45 – – – – – –

Pneumothorax 83 7 871 5 5 66 1122 3385 204 456 326 941

Support Devices 590 1 107 43 1 12 – – – – – –

1 https://huggingface.co/bert-base-german-cased.
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tion was considered positive, and for uncertainty detection, only
the “uncertain” class was considered positive.

To assess the importance of manually and automatically
extracted annotations, we designed three experiments: training
only with manually annotated reports (supervised), DS 1,
automatically extracted labels (weakly supervised), DS 0, and all
available data (hybrid), DS 0 + DS 1. As a baseline, we trained the
model solely on manually annotated reports (DS 1) (supervised
approach).

We investigated the benefit of automatically created weak
labels on label extraction performance. The labels were created
using the rule-based model proposed in a previous study [26]
based on the CheXpert labeler. For validation, we randomly sam-
pled 1000 reports, and for internal testing 5000 reports, without
patient overlap, from the total 66071 reports of DS 0 (▶ Table 1).
We used the remaining 60071 reports for training. For final test-
ing, we used the manually labeled test reports of DS 1.

To leverage all available data, we fine-tuned the weakly
supervised model on the manually annotated reports (DS 1)
(hybrid approach). Again, we trained the model on increasing
fractions of DS 1, as reported in ▶ Table 3.

Pneumothorax Classification (DS 2)

To address the limitation of the small test data set of DS 1, we
tested the labeler on the larger data set 2. Since the data set con-
tains only binary pneumothorax annotations, we considered un-
certain predictions as positive, and blank predictions as negative.

Furthermore, as the goal of label extraction is the training of
image classification models, we trained a chest X-ray classifier to
predict the presence of a pneumothorax based on manual and
extracted labels.

Our pneumothorax classification pipeline utilized a DenseNet-121
[23] pre-trained on ImageNet as a backbone. We replaced the final
fully connected layer with a one-dimensional version for fine-tuning
on DS 2. The final softmax activation was replaced by a sigmoid.
Training involved 10 epochs with AdamW with default parameters
(β1 = 0.9, β2 = 0.999), a learning rate of 0.003, and batch size of 32.
We selected the checkpoint for the final model based on the valida-
tion area under the receiver operating characteristic curve (AUC). All
images were resized to 224 × 224 pixels and normalized using the
ImageNet mean and standard deviation. Data augmentation
involved ten-crop, i. e., taking five crops of the regular and flipped
image. The complete pipeline for the deep learning-based experi-
mental setup is illustrated in ▶ Fig. 3.

We assessed the effect of the labeling method on pneumo-
thorax classification performance on DS 2 by comparing fine-
tuning using radiologists' annotations [26], rule-based [26] or
deep learning-based extracted labels, with a DenseNet-121 fine-
tuned on the chest X-ray 14 data set [24] (CheXnet [25]).

Statistical Evaluation

For all three experimental settings on DS 1, we measured mean F1
scores for the three tasks of mention extraction, negation detec-
tion, and uncertainty detection by comparing model predictions
with manually annotated test reports.

Label extraction performance on DS 2 was measured using
sensitivity and specificity. To simplify the comparison with DS 1,
we applied the same metrics. We measured pneumothorax classi-
fication performance by analyzing receiver operating characteris-
tics (ROC) and AUC. As our research involves numerous compari-
sons and is purely explorative, we abstained from reporting
P-values and instead presented 95% confidence intervals, which
were calculated using 10000-fold resampling via non-parametric
bootstrap methodology at the level of the image or report. Due
to space limitations, 95 % confidence intervals for the F1 scores
were not included.

All statistical analyses were performed using Python version
3.8.10, NumPy version 1.24.2, and Scikit-Learn version 1.2.2.

Due to the retrospective nature of the study, written informed
consent was waived.

Results

Label Extraction (DS 1)

The label extraction results are reported in ▶ Table 3 and
▶ Table 4. Results marked as N/A did not have enough samples
to calculate the corresponding F1 score. Overall, pre-training
using weak labels followed by training on manually annotated
data performed best across all tasks.

The results obtained when trained solely on DS 1 (supervised
approach) are reported in ▶ Table 4. The model achieved a mean
mention extraction F1 score of 0.846 [CI: 0.797–0.880], a nega-

▶ Fig. 2 Deep learning-based German radiology report labeler. The
model extracts CheXpert labels from free-text radiology reports.
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tion detection F1 score of 0.829 [CI: 0.754–0.880], and a mean
uncertainty detection F1 score of 0.575 [CI: 0.444–0.677].

When trained only with reports labeled by the rule-based labe-
ler (weakly supervised approach), the model achieved a mean F1
score of 0.905 [CI: 0.876–0.927] for mention extraction, 0.818
[CI: 0.742–0.857] for negation detection, and 0.534 [CI: 0.408–
0.611] for uncertainty detection (▶ Table 3). Note that although
the model was trained on DS 0, the reported test results were
measured on DS 1.

The effect of pre-training with automatically labeled reports
first and then fine-tuning on varying amounts of manually anno-
tated data (hybrid approach) is reported in ▶ Table 3. The model
achieved a mean mention extraction F1 score of 0.938 [CI: 0.908–
0.959], negation detection F1 score of 0.891 [CI: 0.838–0.924],
and uncertainty detection F1 score of 0.624 [CI: 0.492–0.716].

Rule-based and deep learning-based label extraction results for
all three evaluation tasks are compared in ▶ Table 4. The deep
learning-based labeler was pre-trained with labels extracted by
the rule-based labeler (DS 0) and fine-tuned on the manually an-
notated training data (DS 1) (hybrid approach). Across all three
tasks, the deep learning model performed substantially better.
For mention extraction, our proposed labeler had a mean F1 score
of 0.938 [CI: 0.908–0.959] compared to the score of 0.844 [CI:
0.823–0.922] for the rule-based labeler. For negation and uncer-

tainty detection, the improvement of using a deep learning-based
labeler compared to a rule-based model was 0.891 [CI: 0.838–
0.924] vs. 0.821 [CI: 0.747–0.858] mean F1 score for negation de-
tection, and 0.624 [CI: 0.492–0.716] vs. 0.518 [CI: 0.395–0.594]
mean F1 score for uncertainty detection.

To simplify comparison of labeling results on DS 1 with the
labeling results on DS 2, we additionally measured sensitivity and
specificity by considering uncertain labels as positive and blank
labels as negative. The results are reported in ▶ Table 5. On aver-
age, the deep learning-based labeler achieved a sensitivity of
0.787 [CI: 0.746–0.886] compared to the rule-based approach
with 0.782 [CI: 0.741–0.878] and a higher specificity with 0.934
[CI: 0.905–0.956] vs. 0.904 [CI: 0.875–0.929].

Pneumothorax Label Extraction (DS 2)

The comparison of the rule-based and the deep learning-based
labeler for pneumothorax annotation on DS 2 is presented in
▶ Table 5. The rule-based labeler had a higher sensitivity
compared to the deep learning-based model with 0.997
[CI: 0.994–0.999] vs. 0.972 [CI: 0.963–0.979]. In contrast, the
deep learning-based labeler had a higher specificity with 0.995
[CI: 0.993–0.997] vs. 0.991 [CI: 0.988–0.994].

▶ Fig. 3 Pneumothorax classification model trained with automatically extracted annotations.

▶ Table 3 Comparison of mean test-F1 scores for mention extraction, negation detection, and uncertainty detection on data set 1 with
corresponding 95% confidence intervals. Weakly supervised and hybrid models were (pre-) trained on data set 0. Hybrid and supervised models
were trained on data set 1.

Data Set 1 Mention Extraction Negation Detection Uncertainty Detection

Supervised 0.846 [0.797–0.880] 0.829 [0.754–0.880] 0.575 [0.444–0.677]

Weakly Supervised 0.905 [0.876–0.927] 0.818 [0.742–0.857] 0.534 [0.408–0.611]

Hybrid 0.938 [0.908–0.959] 0.891 [0.838–0.924] 0.624 [0.492–0.716]
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Pneumothorax Classification (DS 2)

To assess the performance of our proposed label extraction algo-
rithm, we trained a pneumothorax classifier on chest radiographs
with labels generated by different methods. The classification
ROC curves and AUC values with corresponding 95% confidence
intervals are shown in ▶ Fig. 4.

The baseline CheXnet model trained on the chest X-ray 14 data
set achieved the lowest performance with an AUC of 0.720
[CI: 0.687–0.882], followed by the model trained on DS 2 with la-
bels extracted from the rule-based model with an AUC of 0.858
[CI: 0.832–0.882]. When trained on labels created by radiologists
inspecting both image and report, the model achieved an AUC
score of 0.934 [CI: 0.918–0.949]. The highest AUC values were
obtained when trained with labels extracted by our proposed
deep learning-based model with 0.939 AUC [CI: 0.925–0.952].

Discussion

In this study, we proposed a deep learning-based chest radiology
report label extraction model. The best performing model was
pre-trained on reports labeled by a rule-based labeler and fine-
tuned on only a thousand manually labeled reports. On average,
it outperformed the rule-based model in all three tasks
(▶ Table 4). These results suggest that the improvements of
employing deep learning-based compared to rule-based label
extraction of CheXpert labels transfer from English to German
radiology reports [21].

The pneumothorax chest X-ray classification results provide
further evidence of the improvements of our proposed deep
learning-based labeler compared to the rule-based labeler. Not
only did the AUC increase from 0.858 to 0.939, but it also surpas-
sed the model trained on the DS 2 labels that were annotated by
radiologists based on inspecting the image and report. These

▶ Table 4 Rule-based (RB) and deep learning-based (DL) label extraction F1 scores for the three evaluation tasks: mention extraction, negation
detection, and uncertainty detection for each finding with corresponding 95% confidence intervals. Labels were extracted from DS 1 and com-
pared to manual annotations. N/A results could not be calculated due to insufficient data. Higher values are highlighted in bold.

Data Set 1 Mention Extraction Negation Detection Uncertainty Detection

Findings RB DL RB DL RB DL

Atelectasis 0.982
[0.936–1.000]

0.963
[0.900–1.000]

1.000
[1.000–1.000]

N/A 0.769
[0.545–0.923]

0.700
[0.421–0.889]

Cardiomegaly 0.660
[0.547–0.757]

0.955
[0.913–0.986]

0.649
[0.444–0.810]

0.898
[0.791–0.978]

0.571
[0.341–0.744]

0.809
[0.667–0.917]

Consolidation 0.950
[0.909–0.980]

0.979
[0.952–1.000]

0.738
[0.600–0.846]

0.909
[0.833–0.968]

0.400
[0.111–0.643]

0.400
[0.000–0.750]

Edema 0.992
[0.975–1.000]

0.984
[0.959–1.000]

0.939
[0.871–0.987]

0.970
[0.921–1.000]

0.600
[0.000–0.909]

N/A

Enlarged Cardi-
omediastinum

0.817
[0.732–0.885]

0.932
[0.883–0.971]

0.800
[0.650–0.913]

0.776
[0.622–0.889]

0.500
[0.261–0.696]

0.821
[0.667–0.933]

Fracture 0.900
[0.784–0.979]

0.900
[0.778–0.980]

0.545
[0.000–0.857]

0.857
[0.571–1.000]

N/A N/A

Lung Lesion 0.857
[0.710–0.968]

0.938
[0.828–1.000]

0.889
[0.500–1.000]

0.889
[0.500–1.000]

0.182
[0.000–0.500]

0.714
[0.364–0.933]

Lung Opacity 0.935
[0.889–0.973]

0.951
[0.912–0.980]

0.679
[0.512–0.812]

0.848
[0.742–0.932]

0.316
[0.000–0.571]

N/A

No Finding 0.025
[0.025–0.096]

N/A – – – –

Pleural Effusion 0.980
[0.952–1.000]

0.973
[0.944–0.994]

0.954
[0.893–1.000]

0.970
[0.919–1.000]

0.588
[0.250–0.833]

0.750
[0.429–0.947]

Pleural Other 0.842
[0.600–1.000]

0.706
[0.364–0.923]

N/A N/A 0.500
[0.000–0.857]

0.333
[0.000–0.800]

Pneumonia 0.921
[0.867–0.965]

0.964
[0.927–0.993]

0.889
[0.806–0.953]

0.966
[0.920–1.000]

0.600
[0.353–0.786]

0.688
[0.467–0.857]

Pneumothorax 0.987
[0.966–1.000]

0.994
[0.980–1.000]

0.964
[0.927–0.993]

0.957
[0.919–0.986]

0.667
[0.000–1.000]

0.400
[0.000–1.000]

Support Devices 0.971
[0.933–1.000]

0.962
[0.920–0.991]

0.800
[0.545–0.960]

0.762
[0.500–0.938]

N/A N/A

Mean 0.844
[0.823–0.922]

0.938
[0.908–0.959]

0.821
[0.747–0.858]

0.891
[0.838–0.924]

0.518
[0.395–0.594]

0.624
[0.492–0.716]
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▶ Table 5 Sensitivity and specificity of the extracted labels compared to the reference annotations on DS 1 and DS 2 with corresponding 95%
confidence intervals. To create binary labels, uncertain labels/annotations were considered positive, blank negative. The deep learning model was
first pre-trained on weak labels and then fine-tuned on the manually annotated training data. RB = rule-based labeler, DL = deep learning-based
labeler (ours). Higher values are highlighted in bold.

Data Set 1 Data Set 2

Sensitivity Specificity Sensitivity Specificity

Findings RB DL RB DL RB DL RB DL

Atelectasis 0.960
[0.867–
1.000]

0.920
[0.800–
1.000]

1.000
[1.000–
1.000]

0.981
[0.939–
1.000]

Cardiomegaly 0.561
[0.405–
0.714]

0.927
[0.838–
1.000]

0.892
[0.781–
0.976]

0.838
[0.710–
0.946]

Consolidation 0.966
[0.886–
1.000]

0.897
[0.769–
1.000]

0.735
[0.605–
0.852]

0.857
[0.750–
0.945]

Edema 0.966
[0.886–
1.000]

0.966
[0.885–
1.000]

0.918
[0.833–
0.981]

0.959
[0.896–
1.000]

Enlarged
Cardio-
mediastinum

0.659
[0.512–
0.800]

0.854
[0.737–
0.953]

0.784
[0.645–
0.909]

0.730
[0.579–
0.867]

Fracture 0.909
[0.700–
1.000]

0.909
[0.700–
1.000]

0.940
[0.877–
0.986]

0.985
[0.952–
1.000]

Lung Lesion 0.900
[0.667–
1.000]

0.900
[0.667–
1.000]

0.956
[0.900–
1.000]

1.000
[1.000–
1.000]

Lung Opacity 0.971
[0.903–
1.000]

0.882
[0.765–
0.974]

0.636
[0.489–
0.773]

0.818
[0.698–
0.927]

No Finding 0.000
[0.000–
0.000]

0.000
[0.000–
0.000]

0.922
[0.857–
0.974]

1.000
[1.000–
1.000]

Pleural Effusion 0.925
[0.833–
1.000]

0.925
[0.833–
1.000]

0.974
[0.914–
1.000]

0.974
[0.914–
1.000]

Pleural Other 0.750
[0.500–
1.000]

0.583
[0.286–
0.875]

1.000
[1.000–
1.000]

1.000
[1.000–
1.000]

Pneumonia 0.857
[0.696–
1.000]

0.952
[0.842–
1.000]

0.982
[0.943–
1.000]

0.982
[0.943–
1.000]

Pneumothorax 0.600
[0.273–
0.900]

0.400
[0.100–
0.727]

0.971
[0.925–
1.000]

0.985
[0.954–
1.000]

0.997
[0.994,
0.999]

0.972
[0.963–
0.979]

0.991
[0.988,
0.994]

0.995
[0.993–
0.997]

Support
Devices

0.932
[0.850–
1.000]

0.909
[0.818–
0.979]

0.941
[0.850–
1.000]

0.971
[0.903–
1.000]

Mean 0.782
[0.741–
0.878]

0.787
[0.746–
0.886]

0.904
[0.875–
0.929]

0.934
[0.905–
0.956]
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results suggest that training with labels extracted from free-text
reports by the deep learning-based labeler is an alternative to
time-consuming manual labeling.

The differences between pneumothorax sensitivity in DS 1 and
DS 2 can be explained by the respective data collection and anno-
tation process. DS 2 samples were specifically selected for clear
cases or the absence of pneumothorax. Uncertain cases were
removed in the data collection process. In contrast, the data for
DS 1 was not filtered and uncertain cases were kept. Given similar
specificity and strong chest X-ray classification results, we inter-
pret the sensitivity differences due to the different data collection
processes. The low pneumothorax uncertainty detection F1 score
further supports this interpretation.

Similar to Nowak et al. [11], the deep learning-based model
outperformed the rule-based model on German reports. Apart
from using different data sets and labels, a direct comparison is
not conclusive, as their model was trained differently, and they
considered both uncertain and negative mentions as negative
labels. Our rule-based labeler served as a strong baseline
(▶ Table 5). Consequently, pre-training with such weak supervi-
sion improved the performance compared to only training on
manually annotated data alone. For example, the mean mention
extraction F1 score improved from 84 % to 94 % when using all
data. Furthermore, our model was trained on approximately
1000 manually labeled reports, compared to the total of
14580 used for development by Nowak et al. [11]. They showed
that increasing the amount of manually annotated training data
improved mean F1 scores from 70.9 % to 95.5 % when increasing
training data from 500 to 14580 samples. However, annotating all
14580 samples took 197 hours. Based on their results, we assume
that increasing the number of manually annotated samples could
further improve our model.

Our study has several limitations. First, due to the limited num-
ber of available manually annotated reports, most data were used
for training. To compensate for this, we tested the model on a lar-
ger pneumothorax data set (DS 2). A future study with more
manually annotated data could both improve model performance
and reduce the variance of test scores. Another limitation is that
the labels of DS 1 were created by a single radiologist, possibly
introducing label biases or errors made due to annotation fatigue.

In conclusion, we demonstrated a considerable improvement
in German radiology report labeling using our proposed deep
learning-based labeler. Our results provide evidence of the bene-
fits of employing a deep learning-based model, even in scenarios
with sparse data, and the use of the rule-based labeler as a tool for
weak supervision.

Clinical Relevance

One of the main motivations of employing deep learning models in
clinical decision support systems is to reduce the effects of the
worldwide shortage of radiologists. However, the data to train or
test such models must be annotated by radiologists. Our presented
labeler drastically reduces the required amount of manually
annotated reports and performed equivalently compared to the
pneumothorax classification model trained with labels created by
radiologists.
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