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ABSTRACT

Volumetry is crucial in oncology and endocrinology, for diagno-

sis, treatment planning, and evaluating response to therapy for

several diseases. The integration of Artificial Intelligence (AI)

and Deep Learning (DL) has significantly accelerated the auto-

matization of volumetric calculations, enhancing accuracy and

reducing variability and labor. In this review, we show that a

high correlation has been observed between Machine Learning

(ML) methods and expert assessments in tumor volumetry;

Yet, it is recognized as more challenging than organ volumetry.

Liver volumetry has shown progression in accuracy with a

decrease in error. If a relative error below 10 % is acceptable,

ML-based liver volumetry can be considered reliable for stand-

ardized imaging protocols if used in patients without major

anomalies. Similarly, ML-supported automatic kidney volume-

try has also shown consistency and reliability in volumetric cal-

culations. In contrast, AI-supported thyroid volumetry has not

been extensively developed, despite initial works in 3D ultra-

sound showing promising results in terms of accuracy and

reproducibility. Despite the advancements presented in the

reviewed literature, the lack of standardization limits the gen-

eralizability of ML methods across diverse scenarios. The

domain gap, i. e., the difference in probability distribution of

training and inference data, is of paramount importance before

clinical deployment of AI, to maintain accuracy and reliability in

patient care. The increasing availability of improved segmenta-

tion tools is expected to further incorporate AI methods into

routine workflows where volumetry will play a more prominent

role in radionuclide therapy planning and quantitative follow-

up of disease evolution.
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Introduction

In nuclear medicine, volumetry (i. e., calculating the volume of or-
gans, tumors or other lesions of interest) is essential for various
clinical indications. Accurate volume measurements help in diag-
nosis, prognosis, treatment planning, and response assessment as
well as planning and dosimetry for radionuclide therapy to deter-
mine the optimal administered radioactivity and estimate the real
deposited dose.

In oncology, assessing tumor size and extent is relevant for (a)
staging, (b) monitoring changes following treatment and hence
to determine the efficacy of the intervention, and (c) to predict
the likelihood of metastasis, recurrence, and overall patient out-
come. In the special case of selective internal radiotherapy
(SIRT), pretherapeutic volumetry of the tumor and the treated
liver segments is often used to determine the dose to tumor and
normal liver [1]. Thus it provides crucial information to decide if
SIRT can be offered as an effective and safe treatment for an indi-
vidual patient, and in case this is true, to calculate the optimal
therapeutic activity.

In endocrinology, volumetry is crucial for assessing thyroid
volume in cases of goiter, to calculate the radioactivity to be
administered in radioiodine therapy for patients with Gravesʼ dis-
ease, or to trigger potential changes in the management strategy
for suspicious thyroid nodules.

Although several tools are available that are dedicated to volu-
metry or include manual or semi-automated segmentation and
volume calculation options (e. g., in alphabetic order, DosePlan,
Freesurfer, ImFusion, MIM, LIFEx, Satori, among many), they are
prone to errors and labor-intensive because they require manual
intervention. Among the potential pitfalls are (a) the erroneous
transfer of labels between slides, where a manual annotation is
wrongly extended to the neighboring slides in particular in cases
where the spacing between them is larger than the in-plane reso-
lution, (b) the incorrect definition of margins between structures
due to low contrast, such as the boundary between heart and
liver, or (c) the creation of artificial “holes” in segmentation masks
due to high contrast variation within structures, such as calcifica-
tions in thyroid and liver.

Artificial Intelligence (AI) and in particular Deep Learning (DL)
can automate volume calculations, thereby reducing intraobser-
ver and interobserver variability, and thus improving the accuracy
of static and longitudinal volume comparison. Artificial neural
networks can efficiently process 3D images, segment structures
of interest, and based on those segmentations, calculate volumes
with high accuracy. Some AI techniques are capable of adapting
to variations in image quality and anatomical structures, improv-
ing consistency and reproducibility in volume measurements
across different observers and imaging sessions compared to hu-
mans in several studies (e. g., [2–4]). The major impact of AI can
be shown in 3D ultrasonography, a growing field given the drop in
costs (due to the possibility of reimbursement and the availability
of cheaper devices), where the steep learning curve currently
makes it difficult for users to exploit its full potential [2, 5].

It is worth noting that even in nuclear medicine applications,
volumetry is often not applied to the scintigram, single-photon
emission tomography (SPECT), or positron emission tomography

(PET) image but to the radiological counterpart, because the lim-
ited spatial resolution of nuclear medicine images and partial vol-
ume effects complicate the definition of lesion boundaries. Also
due to longer acquisition times, these images are more prone to
distortion from breathing.

In this review, we therefore summarize existing literature on the
performance of these AI methods in computed tomography (CT),
magnetic resonance imaging (MRI) and ultrasound (US) or – if suit-
able – when applied to PET images. We close the paper discussing
challenges and perspectives for the near future.

Volumetry

Volumetry, also known as volume calculation or volume estima-
tion, is the procedure of determining the volume of particular
structures. A common application in the context of clinical care
in nuclear medicine is thyroid volumetry, where the size of the
two thyroid lobes of a patient is measured using 2D ultrasound.
For this the thickness and width of each of the lobes are measured
directly on the ultrasound plane of an axial image, while its length
is obtained from the perpendicular sagittal plane. All three meas-
ures are then combined with the measures of the contralateral
lobe to obtain an approximated thyroid volume using the ellipsoid
formula [6, 7]. This approach is clearly not optimal in terms of
accuracy, but has become a standard worldwide due to its simpli-
city. Similar methods are applied for the volumetry of other
organs, such as the liver [8].

If volumetry is performed in 3D images, more accurate meth-
ods can be applied. Using image segmentation methods, a binary
mask of the structure of interest can be obtained. As a subsequent
step, the volume is calculated by counting the number of non-
zero voxels and multiplying the total sum by the voxel size. The ac-
curacy of such a method relies completely on the quality of the
segmentation mask. Most volumetry approaches that incorporate
machine learning (ML) follow this approach [9].

Alternatively, the volume of the structure of interest can be
directly inferred from the images without the need for segmenta-
tion. Such an approach has been proposed, e. g., by Hussain et al.
[9], yet such works seem to be an exception.

To quantify the quality of volume estimations, typically the re-
lative volume error (RVE) is calculated with respect to an expert.
Whenever the volume is calculated from a segmentation mask,
the RVE can be calculated as the (absolute) difference between
false positive and false negative pixels or voxels divided by the
true positive plus the false negative ones. Alternatively, some
works report the absolute volume error (AVE) or the correlation,
in terms of Pearson’s correlation coefficient (also known as inter-
observer correlation coefficient, ICC), between AI and human ex-
perts. Some works evaluate the interobserver variability of the
volume calculation, or the interobserver variability of the error
on the volume. For the latter, the volume calculated by an expert
is assumed as ground truth to calculate the volume error, which is
then analyzed in terms of variability between non-expert readers
and automatic methods. Metrics like the well-established
Sørensen-Dice coefficient (DSC) and the Jaccard-Index (JI), also
known as Intersection-over-Union (IoU), are proxies to the RVE

344 Wendler T, et al. Artificial Intelligence-powered automatic… Nuklearmedizin 2023; 62: 343–353 | © 2023. The Author(s).

Review



(see below), yet they do not provide direct volumetric informa-
tion.

In nuclear medicine, volumetry based on radiological imaging
is used to determine the total volume of organs and tumors, be-
cause CT, MRI or sonography can be regarded as the ground truth
for such purposes. However, in certain conditions, volume calcu-
lations based on nuclear medicine images can be helpful to quan-
tify the active tumor volume it this is associated with the patient’s
prognosis (e. g., in neuroendocrine tumors [10], lymphoma [11]
or prostate cancer [12, 13]) or if there is a discrepancy between
the morphological and the metabolic response to therapy (e. g.,
in lymphoma after chemotherapy [14]). Another application of
volume calculation from nuclear medicine images is the preopera-
tive volume estimation of viable liver tissue before partial hepa-
tectomy.

Methodology

We framed the review by going through literature on volume esti-
mation for clinical applications that are closely related to daily
routine in nuclear medicine: tumor, liver and thyroid volumetry.
For these means, a search on PubMed was performed combining
three elements (1) application, (2) task and (3) tool on September
1st, 2023. For the application, the terms “tumor”, “liver” and “thy-
roid” were used, for the task, we applied the keywords “volume-
try”, “volume estimation” and “volume calculation”, while for
the tool “machine learning”, “deep learning” or “neural network”
were selected. As an example, one possible search was: (“Tumor”
AND “Volumetry” AND “Machine learning”). All 27 retrieved com-
binations were evaluated.

We considered any paper providing volumetry data for this re-
view, including publications on radiological examinations due to
their relevance for nuclear medicine procedures, as described
above. Additionally, works not including volumetry evaluations,
but only segmentation results were removed, as well as papers
not using ML approaches.

In total, 32 hits were obtained for tumor, 38 for liver and 4 for
thyroid. From those 5, 11 and 4 papers were deemed relevant for
this review. Hits were removed in cases of repetitions, phantom or
preclinical studies, lack of evaluation of volumetry, or if the hit did
not provide clinical information. Two publications on tumor volu-
metry included data on kidney volume, and we decided to address
kidney volumetry in a separate chapter.

Results

Tumor volumetry

Calculating the volume of a tumor can be crucial in different sce-
narios. Tumor volume (in particular, change in volume) plays a
role in staging, therapy selection and follow-up/prognosis.

Gutsche et al. propose to use an nnUnet [15] to segment the
metabolic tumor volume in O-(2-[18F]fluoroethyl)-L-tyrosine
([18F]FET) PET images of patients with glioblastoma [16]. They
used 399 manually annotated patients for training and 156 pa-
tients for testing. To evaluate volumetry, they evaluated the cor-

relation between the automatically obtained volumes and those
provided by the experts, which ranged from 0.92 to 0.95 and
was considered acceptable.

Vivanti et al. used a pretrained convolutional neural network
(CNN) to segment liver tumors inside a region of interest (ROI)
from a CT image [17]. They used the volumes derived frommanu-
ally segmented tumors of 37 patients for comparison. Unfortu-
nately, the CNN design was not described in detail, yet the mean
volumetric percentage error was reported to be 16.0% and 17.9 %
with a standard deviation of 10.0 %.

The group of Shapey et al. proposed the use of Unet [18] with a
supervised attention module for segmentation and subsequent
volumetry of vestibular schwannomas in 246 patients [19]. They
evaluated the use of contrast-enhanced T1-weighted MRI or
high-resolution T2-weighted MRI as input. They split the dataset
in 200 training patients and 46 test patients and evaluated the
Unet with and without the supervised attention module, as well
as using a hardness-weighted Dice loss or the common Dice loss.
The relative volumetric error for their networks is reported to be
between 6.96% ±5.68% and 15.98% ± 14.65% depending on the
sequences used for training, the architecture and the loss func-
tion. Their most sophisticated model obtained an average error
of 7.03% ±5.04% on both T1 and T2 images.

In the work by Kang et al., the authors evaluated six different
Unet architectures for the segmentation and volume estimation
of meningiomas in T1-weighted contrast-enhanced MRI [20]. The
authors report the average volume as obtained from manually
segmented images by two experts for an internal dataset as well
as a multi-institution cohort. They trained 2D, 3D and attention
Unets [21] and their nnUnet variants with 489 patients. Both eval-
uation cohorts included 100 patients. The expert tumor volumes
were on average 2.46ml ± 5.18ml, while the networks yielded
5.77ml ± 13.90ml in the internal dataset. In the external cohort,
the results were more consistent with 2.71 ml ± 4.94 ml vs.
3.51ml ± 8.29ml. The differences between networks were mod-
erate; only the 3D Unet performed significantly worse than the
other architectures.

In a different task, Toyonaga et al. used volumetry to evaluate
the quality of a CNN-based attenuation map calculation in onco-
logical patients undergoing PET with three tracers ([18F]FDG,
[68Ga]Ga-DOTA-octreotate ([68Ga]Ga-DOTATATE) and [18F]Fluci-
clovine) [22]. The PET images were reconstructed using the syn-
thetic attenuation maps as well as the real low-dose CT. A pre-
trained CNN [23] was used to automatically extract the metabolic
tumor volume of 246 patients. The resulting segmentation masks
were compared with the ones manually delineated by two ex-
perts. The correlation between volumes was between 0.99 and
1.00, and the volumetric percentage error assuming the manual
segmentations to be true was on average between 1.8 %-6.4 %
with a standard deviation of 15.0 %.

▶ Table 1 summarizes the findings from the publications in this
section. In conclusion, tumor volumetry using the sequential ap-
proach of segmentation followed by volume calculation yields
average relative errors below 20 %. From a clinical perspective,
20 % is on the upper bound of acceptance, yet the major advan-
tage of automatic ML methods is the fact that they can better
deal with shapes that differ from ellipsoids and take significantly
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less time than manual delineation. In all but one reviewed article,
the tumor was directly segmented without the need of the deter-
mination of a region-of-interest (ROI) or the input of a seed
prompt by the user.

Overall, the reviewed works have reported a high correlation
between the ML methods and experts (0.92–1.00), while the rela-
tive volumetric error ranges between 6.96 % and 17.9 %. When
judging these results, it is worth noting that tumor volumetry is
a more difficult task than organ volumetry – even for experts.

Liver volumetry

Liver volumetry plays a role in surgical scenarios, such as planning
a partial hepatectomy or in liver transplantation, yet it is also of
relevance in the monitoring of liver diseases and in the context of
nuclear medicine for selective internal radiotherapy (SIRT).

Several of the works listed below have used data from different
medical image processing challenges as training dataset or as
benchmark, such as the MICCAI-Sliver07 dataset [24], the 3Dir-
cadb1 dataset [25] or the Liver Tumor Segmentation Benchmark
(LiTS) dataset [26].

Takamoto et al. evaluated the performance of the commercial
software Synapse 3D version 6 by Fujifilm to calculate the volume
of the liver and liver segments in contrast-enhanced CT [27]. They
used the volumes derived from the manual segmentation per-
formed by a surgical specialist and reviewed by an expert as
ground truth. The liver volumes showed a correlation of 0.98
(with the 95 % confidence interval (CI) between 0.98 and 0.99),
while the average volumetric error was 69.3ml ± 46.5ml (95% CI,
61.6ml – 77.0ml). This corresponds to a percentage error of
6.70% ± 4.49% (95% CI, 5.95% – 7.43%).

Lu et al. propose the sequential use of a 3D CNN and graph
cuts for refining the segmentation of the liver in contrast-en-
hanced CTs [28]. They trained on data of 68 in-house patients
and 10 patients from the MICCAI-Sliver07 dataset. They bench-
marked their results using 10 other patients from the MICCAI-Sli-
ver07 dataset and 20 patients from the 3Dircadb1 dataset. The
mean relative volumetric error was reported to be 2.70 % and

0.97% for the two test sets. Combining both datasets (10 + 20 pa-
tients), the authors report an ICC of 0.931.

In a study of 197 in-house patients and 131 patients from the
LiTS challenge, Marinelli et al. used a 3D-Unet to estimate the vol-
ume of the liver for multiple pathologies in contrast-enhanced CT
scans [29]. They used natural language processing tools to extract
the liver volume from reports, which they regarded as the ground
truth. They compared the absolute error of four models, one
trained on the LiTS dataset and three including either five “diffi-
cult” in-house patients where the LiTS model underestimated or
overestimated the volume, or using all 10 hard cases. In these
cases, they generated the masks manually. They report an im-
provement of the error from 231 mL (95 % CI: 202, 260) to
183mL (95 % CI: 160, 206), 216 mL (95 % CI: 186, 247), and
176mL (95 % CI: 154 198), respectively, when compared to the
volumes obtained from the medical reports.

Koitka et al. used a multiresolution 3D Unet (MultiResUNet)
[30] to segment and estimate the volume of each lobe of liver
from contrast-enhanced CT [31]. The training set consisted of
100 in-house patients and the test set of additional 30 patients
from a different hospital. The RVE was 2.19 %± 1.40 %, and the
AVE 32.12 ± 19.40ml. For both lobes the RVE was reported to be
2.22%± 2.30 % and 2.07%± 5.52% (right and left).

The team of Shin et al. took volumetry for patients with auto-
somal dominant polycystic kidney disease under consideration
[32]. In a first stage, they trained a multiorgan segmentation
model based on Vnet [33] with 153 native CTs and 22 contrast-en-
hanced ones from five hospitals. The correlation for the AI-calcu-
lated combined volume of liver and kidney was 0.9997 with re-
spect to three experts, and in only 5.1 % of the 39 test cases the
RVE was above 5%. They then evaluated the ICC of their AI versus
11 experts. Except for one human rater the ICC ranged between
0.966 and 0.999, while the AI rated 0.992. The one expert show-
ing an ICC of 0.897, a clear outlier from the data, had 9 years of
experience reporting on patients with the same pathology. This
points out at the fact that human experts do not necessarily pro-
vide the ultimate ground truth.

▶ Table 1 Overview of results for tumor volumetry. ML =machine learning, ce = contrast-enhanced, hr = high resolution, CNN = convolutional neural
network, ICC = interobserver correlation coefficient, RVE = relative volumetric error (%).

Author Modality Train Test Tumor Entity ML Criterion Value

Gutsche [18F]FET PET 156 399 Gliobastoma nnUnet ICC 0.92–0.95

Vivanti CT Liver CNN RVE 16.0%–17.9 % ± 10.0%

Shapey MR ceT1, hrT2 200 46 Vestibular
schwannoma

2.5 D Unet with
attention

RVE 6.96%–15.98 %
±14.65 %

Kang MR ceT1 459 200 Meningioma nnUnet and Unet
(2D, 3D, attention)

Volume cohort 1
(manual vs. ML)

2.46ml ± 5.18ml vs.
5.77ml ± 13.90ml

Volume cohort 2
(manual vs. ML)

2.71ml ± 4.94ml vs.
3.51ml ± 8.29ml

Toyonaga [68Ga]Ga-DOTATATE
PET, [18F]Fluciclovine
PET, [18F]FDG PET

120 246 Several 3D Unet ICC 0.99–1.00

RVE 1.8–6.4% ± 15.0%
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In a similar application, Cayot et al. evaluated the automatic
segmentation and volume estimation of polycystic livers training
on 64 patients and evaluating on additional 24 patients [34]. They
used a 3D Unet approach using as ground truth the delineation by
an expert getting an RVE of 1.1 %±4.0 % for the AI. The intra- and
interobserver variability for the experts was assessed to be 0.6 %
± 2.1 ± and 2.8%± 3.8 % respectively. The concordance correlation
coefficient for the AI, the same expert (intra) and another expert
(inter) were 0.995 (95% CI, 0.991–0.997), 0.998 (95% CI, 0.997–
0.999) and 0.994 (95% CI, 0.990–0.997).

Ng et al. evaluated both a Gaussian mixture model (GMM) and
a Unet for the liver segmentation and subsequent volumetry in
contrast-enhanced images from a spectral detector CT (SDCT)
[35]. They trained their model using 30 patients with healthy li-
vers using a 5-fold cross validation scheme. They compared vol-
ume estimation also using the spectral data or not (i. e., using
only the Hounsfield units image). The GMM showed better results
than the Unet with respect to the manual annotation by experts in
both SDCT and ceCT (9.2 %± 3.4 % and 5.9 %± 12.8 % vs. 10.2 %
± 131.% and 15.3 %± 16.1 % respectively). The size of the dataset
is limited such that a strong statement is not possible, yet the con-
tribution of the spectral information seems to be beneficial for the
Unet while it did not contribute to the GMM.

For MRI, Chelus et al. propose a semi-automatic approach that
combines a CNN with manual corrections [36]. They use an in-
house dataset of 83 patients where dynamic contrast-enhanced
(DCE) MRI images were acquired as part of the SIRT of primary or
metastatic liver cancer. Sixty-two patients were used for training
and validation, and 21 patients for testing. Three 2D-CNNs for ax-
ial, coronal and sagittal images were combined by majority vot-
ing. The manual annotations of an expert were used as ground
truth, while the method was evaluated with and without manual
corrections and against a radiologist and two residents. Without
corrections, the CNN ensemble yielded a relative error of 4.5 %
± 3.5 % while the human readers achieved 3.6 %–5.8 %±5.0 %. The
collaborative approach (i. e., ML with human correction) reduced
the error to 3.1%-3.5 %±2.2 %. The interobserver variability of the
error of the human rater was 2.8 %± 1.4 %, which was higher than
with the collaborative approach (0.7 %± 0.9 %).

Winther et al. studied the ICC of the liver volume of a 3D Unet
with respect to experts in a dataset of 100 patients undergoing
contrast-enhanced T1-weighted volumetric interpolated breath-
hold examination (VIBE) MRI [32]. They trained with 75 patients
and evaluated in 4-folds cross validation setup. The human inter-
reader volumetry had an ICC of 0.973, while the 3D Unet obtained
0.987. Other metrics used such as the DSC also were favorable for
the AI-method.

In the scope of autosomal dominant polycystic kidney disease
(ADPKD), Woznicki et al. trained an nnUnet on a large dataset of
327 patients from multiple hospitals in Germany and the Nether-
lands to segment liver and kidneys. They verified their model on a
separate internal 93-patient dataset, as well as an external one in-
cluding 323 patients scanned with multiple devices and varied im-
age protocols, yet only including kidneys. The training input was
MRI images of different T2-weighted sequences (turbo-spin echo
(TSE), spectral presaturation with inversion recovery (SPIR), map-
ping, half-fourier-acquired single-shot turbo spin echo (HASTE)

and true fast imaging with steady-state free precession (TRUFI))
in 2D (coronal and axial) as well as 3D. From the 323 multiple ven-
dor dataset, the authors used only T2-weighted images including
sequences that were not used during training. In the internal da-
tasets, the ICC for kidney and liver was between 0.996 and 0.999
with an RVE of 0.5% (limits of agreement, LoA -8.7 %, 8.2 %). In the
external kidney dataset the RVE was 1.3 % (LoA -15.9 %, 13.2 %)
using both planes.

Trying to understand which MRI sequence is best for AI-sup-
ported segmentation and volume calculation, Saunders et al.
trained multiple 3D Unets [37]. 42 obese adolescents underwent
an MRI scan with multiple sequences (water, fat, T2*, true fast
imaging with steady state precession (TrueFISP), HASTE) and the
liver was segmented manually. The Unets were trained using
5-fold cross-validation and consisted of five single channel Unets
(for all 5 sequences), one two-channel sequence (water+fat) and
one three-channel one (water, fat, T2*). They reported the nor-
malized root mean squared error (NRMSE) to range between
4.23 % for the two-channel 3D Unet to 6.82 % for the T2*-Unet.
The AVE ranged from 7.7 ml for the three-channel Unet to
41.5ml for the TrueFISP-Unet.

In an approach to offer a multimodal liver segmentation meth-
od, Wang et al. used a 2D-Unet trained on multiecho spoiled gra-
dient-echo (SPGR) MRI (both 2D and 3D for variable T2-weight-
ing), contrast-enhanced T1-weighted MRI (ceT1) and contrast-
enhanced CT (ceCT) [38]. They followed a sequential training
starting with 300 SPGR MRI patients, and then refined the model
with additional 30 SPGR MRI, 20 ceT1 and 10 ceCT datasets. For
evaluation, they used 230 CT (also unenhanced) and 100 ceT1 pa-
tients. As ground truth, experts were involved yielding a correla-
tion of 0.95 for the test CT dataset with an average absolute error
of –58.1mL (95 % CI -298, 180), i. e., a relative error of –3.5 %
(95 % CI –17.8, 10.7). For the ceMRI, the same metrics were
0.98, –89mL (95% CI –358, 180), and -4.0 % (95% CI –16.1, 8.1).

Liver volumetry seems to be a widely investigated topic with
initial public challenges dating as far back as 2007. For example,
the results of the LiTS challenge show a relative volumetric error
in the range of 0 % to 49.6 % for a total of 228 participants at the
time this review was written [26]. Bilic et al. show that with in-
creasing quality of annotations and improved methods, the per-
formance in the latest challenge from 2018 has already improved
significantly; the best three teams achieved an error below 2 %
[39]. Such improvement in performance can also be observed
when analyzing the submissions to the challenges over the years.
However, a lack of harmonized data, wrong annotations (e. g.,
[32]) or missing information with respect to the scanner or ima-
ging protocols that were used or on patient demographics limit
the possibility to include such information in the ML methods,
making it harder to obtain generalizable models that could be
applied to a wide range of scenarios.

In summary, the papers on liver volumetry reviewed for this
work reported absolute (and relative) errors ranging between 58
and 231mL (0.97 and 15.4 %). All but one of the articles yield a
percentage error below 10 %. However, in the only publication
that reported relative errors above 10%, the authors did not in-
clude manually annotated volumes but derived them from clinical
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reports [29]. A high ICC with experts was reported (0.93 to 0.99),
and interobserver variability was as low as 0.7 % (▶ Table 2).

Kidney volumetry

Several diseases, such as polycystic kidney disease or renal tu-
mors, result in an abnormal size and shape of the kidneys. In cer-
tain conditions, the total size of the kidney can be a good indicator
of disease progression or recurrence. In the context of nuclear
medicine, kidney volumetry can be relevant for dosimetry in pep-
tide receptor radionuclide therapy [40].

In a work of 2022, Hsiao et al [41] used a Unet with a ResNet-41
as encoder to calculate the total kidney volume (TKV), i. e., the sum
of the size of both kidneys including tumors and cysts. They trained
their networks on 210 publicly available cases from the Kidney and
Kidney Tumor Segmentation Challenge (KiTS) dataset [42] using
5-fold cross-validation. To evaluate its performance, they compared
it to the conventional ellipsoid formula and a ground truth (manual

annotations) in 10 cases. Their method showed an average percen-
tage error of 1.43% (95% CI: 0.40, 2.47) vs. the 10.5% (95% CI: 6.6,
14.3) error of the ellipsoid method.

In a different approach, Hussain et al. presented a cascaded re-
gression neural network (a CNN-guided Mask-RCNN) for segmen-
tation-free volume estimation [9]. Their network was trained/vali-
dated on 160/15 patients of the KiTS dataset, or alternatively 65/
10 from an in-house dataset. They used the remaining 35 KiTS and
25 in-house patients for performance evaluation. The mean per-
centage error was 4.80 %± 3.89 % for the in-house dataset and
7.26%± 6.80 % for the 35 KiTS patients. When evaluating the cor-
relation between their method and the ground truth, they report
ICC of 0.964 and 0.971 (Student’s t-test: p-values of 0.904 and
0.752 for both datasets).

▶ Table 2 Overview of results for liver volumetry. ML =machine learning, ceCT = contrast-enhanced CT, nCT = native CT, ceT1 = contrast-enhanced
T1-weighted MRI, ceVIBE = contrast-enhanced T1-weighted VIBE MRI, DCE = dynamic contrast-enhancement, SPGR =multiecho spoiled gradient-
echo, mCRC=metastatic colorectal cancer, ADPKD = autosomal dominant polycystic kidney disease. CNN= convolutional neural network,
GMM=Gaussian Mixture Model, AVE = absolute volumetric error in mL, RVE = relative volumetric error in percentage, CCC = concordance correlation
coefficient, CI = 95% confidence interval. * RVE is not reported, but calculated from AVE assuming an average liver volume of 1500mL.

Author Modality Train Test Indication ML Criterion Value

Takamoto ceCT n/a 144 mCRC, Cholangio-
carcioma, other liver
metastases

Synapse 3D ICC 0.98 (CI 0.98, 0.99)

RVE 6.70 % ±4.49% (CI 5.95 %, 7.43%)

Marinelli CT 141 187 Various liver diseases 3D Unet AVE 183–231mL

RVE* 12.2–15.4%

Lu ceCT 78 30 Various, non-tumorous
anomalies and healthy

3D-CNN +
graph cut

ICC 0.931

RVE 0.97–2.70%

Shin nCT, ceCT 153 39 ADPKD Vnet ICC 0.9997

50 ICC (AI vs.
11 experts)

0.992 vs. 0.897–0.999

Cayot nCT, ceCT 64 24 Polycystic liver, hepato-
renal polycystic disease

3D Unet RVE 1.1 % ± 4.0 %

CCC 0.995 (CI, 0.991–0.997)

Ng ceSDCT,
ceCT

25 5 Healthy volunteers 2D Unet RVE 10.2–15.3% ± 16.1%

GMM 5.9–9.2 % ± 12.8%

Chlebus DCE MRI 62 21 Primary and metastatic
liver cancer

Ensemble
2D-CNN +
manual cor-
rection

RVE 3.1–3.5 %± 2.2%

Interobserver
variability

0.7 ± 0.9%

Winther ceVIBE 75 25 Various, also non
oncological

3D Unet ICC 0.973 vs. 0.987

Saunders 5 MRI
sequences

32 10 Obese adolescents 3D Unet NRMSE 4.23–6.82%

AVE 7.7–41.5mL

Woznicki Several
T2-MRI

327 93 ADPKD nnUnet ICC 0.996–0.999

RVE –0.5 % (LoA –8.7%, 8.2 %)

Wang SPGR MRI,
ceT1 MRI,
ceCT, nCT

360 330 Various, also non
oncological

2D Unet ICC 0.95–0.98

AVE 58–89mL

RVE 3.5–4.0 %
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Interestingly, the authors derive an empirical formula to relate
the well-established Sørensen-Dice coefficient (DSC) to the rela-
tive volume error, namely:

Assuming that this formula would prove to be sufficiently
accurate, most of the results on organ segmentation from the lit-
erature could be quantified in terms of volume. However, such an
endeavor is out of the scope of this review.

In this review, no explicit search was performed for ML papers
focusing on kidney volumetry (▶ Table 3). However, we regard
especially the work of Hussain et al. [9] as relevant because it pro-
poses a different approach and provides an approximation for
converting Dice scores to relative volumetric error.

The range of error for kidney volume calculation of 1.43% and
7.26% that we derived from this small subset of articles is similar
to the error reported for liver volumetry. Correlation with experts
is also documented to be high (0.964–0.971).

Thyroid volumetry

The thyroid volume is estimated often as part of the clinical rou-
tine for the diagnosis, treatment and monitoring of thyroid dis-
eases. Conventionally, the thyroid is imaged using ultrasound
(US) because of its limited costs and the lack of ionizing radiation.
However, the interpretation of US images is challenging and poses
some limitations to the accuracy of thyroid volumetry showing er-
rors ranging between 1.1 % to up to 22.7 % [43, 44].

Chang et al. [45] proposed a combination of a radial basis func-
tion neural network (RBF-NN) [46] and the particle swarm (PSO)
algorithm [47, 48] to perform thyroid volumetry from 2D B-mode
US. First, they acquire 2D US, and the image quality is enhanced
using conventional image processing methods. During training,
the RBF-NN learns to classify small regions of interest extracted
from the US images as “thyroid” or “non-thyroid”. At the test
phase, by predicting the class of the patches, the RBF-NN returns
an approximated thyroid segmentation which is then refined using
a region growing method. Finally, they use the particle swarm opti-
mization (PSO) algorithm to optimize the parameters of the thyroid
volume estimation formula, so that its result is as close as possible
to the volume computed from a CT scan. They report an AVE of
0.69 ± 0.61ml, i. e., an RVE of 3.74 ± 2.00% for a test cohort of five
patients.

Kumar et al. [49] employed a multi-prong convolutional neural
network (MP-CNN) [50] to segment the thyroid gland, thyroid
nodules and cysts in 2D B-mode US. They reported a DSC of 78%
for the three anatomies and an RVE in the estimation of the vol-
ume of the nodule of 7.47 %, where the volume calculated by a
board certified radiologist was used as reference.

In 2018, Poudel et al. compared three non-automatic meth-
ods, namely active contours without edges (ACWE) [51], graph
cut (GC) [52] and pixel-based classifier (PBC) [45], and two auto-
matic ones, namely a random forest classifier (RFC) [53, 54] and a
Unet [18] CNN, for thyroid segmentation. A manually annotated
label map was used as reference. They reported DSC of 0.80,

0.77 and 0.67 for ACWE, GC and PBC, respectively, which are be-
low the required accuracy for clinical practice. On the other hand,
the automatic methods, namely RFC and Unet, resulted in a DSC
of 0.86 and 0.87. The non-automatic methods used 2D B-mode
US images, whereas the RFC and the Unet used a 3D B-mode US
volume. The segmentation resulting from the non-automatic
methods were then compounded using ImFusion and MeVisLab
to evaluate the volumetry. Consistently with the results for the
DSC, ACWE was reported to be the best method with an RVE of
17.90%.

Krönke et al. [55] presented a comparison between thyroid vo-
lumetry based on 2D US and 3D US in 28 healthy volunteers. They
also acquired MR (T1 VIBE) to compute the reference volume of
the thyroid. The volumetry on 2D US was performed using the
ellipsoid formula [56], whereas 3D US were segmented by a NN
(namely QuickNat) [57]. The label map was used to derive the vol-
ume of the thyroid. They reported an intraobserver variability of
16.67%± 6.66% and an interobserver variability of 4.86%± 2.83%
(over three 3D US acquisitions between three physicians). The 3D-
US-based volumetry was reported to be more accurate than the
2D-US-based approach, with a percentage error of 4.14 %
± 7.32 % versus 26.95 %± 14.95 % if compared to the MR-based
volumetry. The difference between the volumes computed with
3D US and MRI was not significant.

To summarize the results on thyroid volumetry, the best
performing method with respect to the DSC was the CNN
(DSC= 0.87), and the lowest performance was obtained with the
GC (DSC = 0.67), both reported by Poudel et al. In terms of RVE in
2D US, we observed a high variability ranging from a RVE of
3.74 ± 2.00 % (Chang et al.) to a RVE of 26.95 ± 14.95 % (Krönke
et al.) (▶ Table 4). 3D US appears to improve the accuracy of
thyroid volumetry (RVE < 5 %) which has been also confirmed in
an experimental robotic ultrasound setup [58]. However, the
current literature is too limited to draw a definite conclusion.

Discussion

Volumetry constitutes a critical tool for various clinical applications,
aiding in diagnosis, prognostication, treatment planning, and eval-
uation of response to therapy. It holds particular significance in on-
cology for staging, evaluating treatment efficacy, and predicting
patient outcomes. In particular, volumetry has shown good agree-
ment with manual metrics such as Response Evaluation Criteria in
Solid Tumors (RECIST) [59, 60] as well as a prognostic relevance if
combined with uptake intensities in nuclear medicine images
(e. g., [10]). This opens the possibility to evaluate disease progres-
sion in a more reproducible and consistent way [61]. In the realm of
radionuclide therapy, volumetry has played a relevant role in dosi-
metry, and it will likely gain importance with the increasing rele-
vance of personalized dose planning [62, 63]. Finally, in endocrinol-
ogy, thyroid volumetry is expected to continue to be an integral
part of the diagnostic workflow of goiter and Graves’ disease [64].

The advent of AI, and more specifically DL, has brought forth
advancements in automating and thus significantly speeding vol-
ume calculations, thereby mitigating variability, reducing labor
and enhancing accuracy. The adaptability and efficiency of AI

RVE (%) ≈ 2 –  2  × 100
DSC
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have proven superior in several comparative studies presented in
this review.

The surveyed literature for tumor volumetry demonstrates a
high correlation (0.92–1.00) between ML methods and expert as-
sessments, with a relative volume error spanning 6.96% to 17.9 %.
Given the small number of studies explicitly evaluating tumor vo-

lumetry, and the heterogeneity of them, it is difficult to extra-
polate the results to other applications. However, tumor volume-
try seems to be a more challenging task than organ volumetry
both for experts and ML methods based on the results that we
obtained from articles on liver, kidney or thyroid volumetry. Con-
sidering the importance of the (metabolic) tumor volume as a

▶ Table 3 Overview of results for kidney volumetry. ML =machine learning, ceCT = contrast-enhanced CT, ccRCC= clear cell renal cell carcinoma,
ADPKD= autosomal dominant polycystic kidney disease, CNN= convolutional neural network, AVE = absolute volumetric error in mL, RVE = relative
volumetric error (%), ICC= interobserver correlation coefficient, 95% CI = 95% confidence interval, LoA = limits of agreement.

Author Modality Train Test Indications ML Criterion Value

Hsiao ceCT 200 10 Renal malignancies,
mainly ccRCC

Res-Unet AVE 6.49ml (CI: 1.80, 11.19)

RVE 1.43 % (CI: 0.40, 2.47)

Hussain ceCT 250 60 Renal malignancies
and healthy

CNN-guided
Mask-RCNN

ICC 0.964–0.971 (p-value 0.904–0.752)

RVE 4.80 %-7.26 %±6.80%

Woznicki Several
T2-MRI

327 93 ADPKD nnUnet RVE –1.3 % (LoA –15.9 %, 13.2%)

▶ Table 4 Overview of results for thyroid. ML =machine learning, AVE = absolute volumetric error in mL, RVE = relative volumetric error in percen-
tage, RBF-NN=Radial base function neural network, PSO=particle swarm algorithm, MP-CNN=multi-prong convolutional neural network, Quick-
NAT =Quick segmentation of NeuroAnaTomy, ACWE = active contours without edges, GC = graph cut, PBC = pixel-based classifier, RFC = random for-
est classifier, CNN = convolutional neural network.

Author Modality Train Test Indications ML Structure Criterion Value

Chang 2D US not
reported

5 Thyroid
nodule
patients

RBF-NN + PSO Thyroid gland AVE vs. CT 0.69 ± 0.61ml

RVE vs. CT 3.74 ± 2.00%

Kumar 2D US 186 48 Thyroid
nodule
patients

MP-CNN Thyroid gland DSC vs. expert 0.78

5 Nodule AVE vs. expert 1.40 ± 1.27ml

RVE vs. expert 8.13 ± 7.11%

Krönke 2D US 15 13 Healthy
volunteers

(Ellipsoid formula) Thyroid gland RVE vs. MRI 26.95 ± 14.95 %

Intraobserver variability 15.33 ± 3.21 %

Interobserver variability 12.92 ± 6.32 %

3D US QuickNAT RVE vs. MRI 4.14 ± 7.32%

Intraobserver variability 16.67 ± 6.66 %

Interobserver variability 4.86 ± 2.83%

Poudel 2D US not
reported

1416
(2D US
images)

ACWE Thyroid gland DSC vs. expert 0.8

AVE vs. expert 2.33ml

RVE vs. expert 17.09%

GC DSC vs. expert 0.77

AVE vs. expert 2.61ml

RVE vs. expert 19.19%

PBC DSC vs. expert 0.67

AVE vs. expert 4.09ml

RVE vs. expert 30.01%

RFC DSC vs. expert 0.86

CNN DSC vs. expert 0.87
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biomarker to predict outcome and select therapies (e. g., in dif-
fuse large B-cell lymphoma [65]), we assume that more groups
will focus on AI-based volumetry. Since hybrid scanners for single
photon emission computed tomography (SPECT)/CT, PET/CT and
PET/MRI have become the clinical standard, nuclear medicine
physicians might be increasingly exposed to organ or lesion volu-
metry in the future.

In contrast to tumor volume estimation, liver volumetry has
been extensively studied, revealing a progression in accuracy and
a decrease in volumetric error over time. Bilic et al. reported a sig-
nificant improvement in performance, with the best algorithms
achieving an error below 2% in the 2018 LiTS challenge [39]. Our
review indicates a high ICC (0.93 to 0.98) with expert assessments
and a consistent decrease in errors over time, mostly below 10%.
However, a lack of standardized patient selection and image ac-
quisition protocols, harmonized data and specific scanner and pa-
tient information limits the generalizability of ML methods across
diverse scenarios. This problem is examined in a dedicated review
on harmonization and standardization by Fuchs et al. in this same
Special Issue. Still, if a relative error below < 10 % is deemed
acceptable, ML-based liver volumetry can be considered reliable
for applications like SIRT planning or routine follow-up of non-on-
cological hepatic pathologies. However, routine clinical use of
such methods should only be considered following extensive eval-
uation/validation with in-house data to ensure that there is no rel-
evant domain gap between the (external) training data and the
(local) clinical data.

Our systematic search for publications did not specifically cover
ML applications for kidney volumetry. However, based on the two
articles that we examined, the observed error range (1.43 %–
7.26 %) was comparable to that obtained in liver volumetry, sug-
gesting consistency in volumetric calculations across organs. A
high correlation (0.964–0.971) with expert evaluations further sub-
stantiates the reliability of the ML methods in kidney volumetry.

A particularly relevant finding is the approximation formula to
estimate relative volumetric error from the Dice score. Using this
formula, the majority of reports on organ segmentation could be
quantified in terms of volume, and as result, the volumetric per-
formance could be estimated when selecting segmentation models.

Despite the high frequency of such examinations in routine clin-
ical care, it seems that AI-supported thyroid gland and nodule volu-
metry has not yet been extensively developed or evaluated. The
availability of low-priced 3D US systems (e.g., piur imaging's tUS)
and the possibility of reimbursing them will most likely change this
situation in the midterm as the potential gains in labor and repro-
ducibility are evident.

As a summary, volumetry is an integral source of information
for nuclear medicine experts when diagnosing, evaluating and
planning therapies in oncology and endocrinology. AI can provide
fast and reproducible volume estimations, and we assume that
such methods will be incorporated more and more in the routine
workflows as a result of the availability of ever improving segmen-
tation tools.

However, the wide range of performance in volumetry report-
ed in the reviewed articles underlines the paramount relevance of
the domain gap (i. e., the difference in probability distribution of
training and inference data) before clinical deployment. After all,

AI should not only streamline clinical work, but also keep it accu-
rate and reliable to ensure a true improvement in patient care.
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