Subscribe to RSS
DOI: 10.1055/a-2192-8330
Blutprodukte und Stammzellen in der Arthrosetherapie
Blood Products and Stem Cells in Osteoarthritis TherapyDer Grundsatz der regenerativen Medizin in der Arthrosebehandlung verfolgt eine funktionelle Wiederherstellung von Knorpelgewebe statt nur Reparatur von Knorpeldefekten. Mit dem Einsatz von Blutprodukten sollen chronische Entzündungsprozesse gehemmt und Geweberegeneration gefördert werden. Stammzelltherapien basieren in der Arthrosetherapie häufig auf mesenchymalen Stammzellen aus Fettgewebe oder Knochenmarkaspirat. Extrazelluläre Vesikel als mögliche Botenstoffe der Regeneration könnten Wirkmechanismen erklären.
Abstract
The principle of regenerative medicine in the treatment of osteoarthritis pursues a functional restoration of cartilage tissue instead of just repairing cartilage defects. The use of blood products is intended to inhibit chronic inflammatory processes and promote tissue regeneration. Intraarticular injection of autologous platelet-rich plasma (PRP) is a prominent procedure. Clinical evidence supports PRP injection over hyaluronic acid or glucocorticoid injection. Comparability of studies is difficult due to missing standardisation of production procedures, dosing and donor variability. In particular, whether presence of residual leukocytes is required or should be avoided is an open debate. In contrast, stem cell therapies in osteoarthritis therapy are often based on mesenchymal stem cells (MSC) from adipose tissue or bone marrow aspirate. Different sources of MSC might render the cells more suitable for application in a given context. Nevertheless, it became evident that their secretome rather than the cells themselves are responsible for observed regenerative processes. Research on the mechanisms of action have focused on growth factors. However, an overlooked component of blood products called extracellular vesicles (EV) came to the center of attention, which are also released by MSC as intercellular signal carriers. EV cargo molecules such as miRNAs open up new dimensions in the investigation and explanation of clinically observed anti-inflammatory and regenerative effects.
-
Die Anwendung von Blutprodukten wie Platelet-rich Plasma (PRP) imitiert die Phasen der Wundheilung und soll helfen, chronische Entzündungszustände zu überwinden.
-
Platelet-rich Plasma bietet Patienten in der frühen Phase einer degenerativen Knieveränderung eine bessere symptomatische Schmerzlinderung als intraartikuläre Injektion mit konventionellen Chondroprotektiva wie Hyaluronsäure und sollte bei Patienten mit Knieosteoarthrose in Betracht gezogen werden, jedoch nicht bei Patienten mit fortgeschrittener Osteoarthrose.
-
MSC-basierte (MSC: mesenchymale Stamm- bzw. Stromazellen) Therapien werden zur Symptommodifikation bei Arthrose eingesetzt.
-
Die klinische Evidenz ist bei vielen dieser Indikationen gering, dennoch konnte bei einigen Indikationen wie Bone Marrow Aspirate (BMAC) in Kombination mit Scaffolds bei Knorpelläsionen bereits ein moderater Body of Evidence aufgebaut werden. Die höchste Evidenz hat die Therapie mit Platelet-rich Plasma (PRP) für die Anwendung bei Gonarthrose gezeigt.
-
Die Heterogenität von Produkten, Zellquellen und Prozessierungen macht die wissenschaftliche Vergleichbarkeit von Methoden oft herausfordernd.
-
Extrazelluläre Vesikel können verschiedene Signalmoleküle transportieren, Entzündung hemmen und Geweberegeneration fördern.
Schlüsselwörter
Platelet-rich Plasma - mesenchymale Stammzellen - extrazelluläre Vesikel - KnorpelgewebePublication History
Article published online:
25 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Kingsley CS. Blood coagulation; evidence of an antagonist to factor VI in platelet-rich human plasma. Nature 1954; 173: 723-724
- 2 Marx RE, Carlson ER, Eichstaedt RM. et al. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85: 638-646
- 3 Taniguchi Y, Yoshioka T, Sugaya H. et al. Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population. J Exp Orthop 2019; 6: 4
- 4 Kobayashi Y, Saita Y, Nishio H. et al. Leukocyte concentration and composition in platelet-rich plasma (PRP) influences the growth factor and protease concentrations. J Orthop Sci 2016; 21: 683-689
- 5 Laver L, Marom N, Dnyanesh L. et al. PRP for degenerative cartilage disease: a systematic review of clinical studies. Cartilage 2017; 8: 341-364
- 6 Cavallo C, Roffi A, Grigolo B. et al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. BioMed Res Int 2016; 2016: 6591717
- 7 Magalon J, Brandin T, Francois P. et al. Technical and biological review of authorized medical devices for platelets-rich plasma preparation in the field of regenerative medicine. Platelets 2021; 32: 200-208
- 8 Yáñez-Mó M, Siljander PRM, Andreu Z. et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066
- 9 Bennell KL, Paderson KL, Metcalf BR. et al. Effect of Intra-articular Platelet-Rich Plasma vs Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients With Knee Osteoarthritis. JAMA 2021; 326: 2021-2030
- 10 Chu J, Duan W, Yu Z. et al. Intra-articular injections of platelet-rich plasma decrease pain and improve functional outcomes than sham saline in patients with knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2022; 30: 4063-4071
- 11 Yurtbay A, Say F, Çinka H. et al. Multiple platelet-rich plasma injections are superior to single PRP injections or saline in osteoarthritis of the knee: the 2-year results of a randomized, double-blind, placebo-controlled clinical trial. Arch Orthop Trauma Surg 2022; 142: 2755-2768
- 12 Filardo G, Previtali D, Napoli F. et al. PRP injections for the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. Cartilage 2021; 13(1 Suppl.): 364S-375S
- 13 Smith PA. Intra-articular autologous conditioned plasma injections provide safe and efficacious treatment for knee osteoarthritis:an fda-sanctioned, randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med 2016; 44: 884-891
- 14 Filardo G, Kon E, Pereira Ruiz MT. et al. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single- versus double-spinning approach. Knee Surg Sports Traumatol Arthrosc 2012; 20: 2082-2091
- 15 Sánchez M, Fiz N, Azofra J. et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthroscopy 2012; 28: 1070-1078
- 16 Cerza F, Carnì S, Carcangiu A. et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med 2012; 40: 2822-2827
- 17 Filardo G, Kon E, Di Martino A. et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord 2012; 13: 229
- 18 Filardo G, Di Matteo B, Di Martino A. et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med 2015; 43: 1575-1582
- 19 Kon E, Mandelbaum BR, Buda RE. et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy 2011; 27: 1490-1501
- 20 Cao Y, Wan Y. Effectiveness of platelet-rich plasma in anterior cruciate ligament reconstruction: a systematic review of randomized controlled trials. Orthop Surg 2022; 14: 2406-2417
- 21 Cole BJ, Gilat R, DiFiori J. et al. The 2020 NBA Orthobiologics Consensus Statement. Orthop J Sports Med 2021; 9
- 22 Kunze KN, Pakanati JJ, Vadhera AS. et al. The efficacy of platelet-rich plasma for ligament injuries: a systematic review of basic science literature with protocol quality assessment. Orthop J Sports Med 2022; 10
- 23 Albrecht F, Roessner A, Zimmermann E. Closure of osteochondral lesions using chondral fragments and fibrin adhesive. Arch Orthop Trauma Surg 1983; 101: 213-217
- 24 Massen FK, Inauen CR, Harder LP. et al. One-step autologous minced cartilage procedure for the treatment of knee joint chondral and osteochondral lesions: a series of 27 patients with 2-year follow-up. Orthop J Sports Med 2019; 7: 2325967119853773
- 25 Otahal A, Kramer K, Kuten-Pella O. et al. Characterization and chondroprotective effects of extracellular vesicles from plasma- and serum-based autologous blood-derived products for osteoarthritis therapy. Front Bioeng Biotechnol 2020; 8: 584050
- 26 Otahal A, Kuten-Pella O, Kramer K. et al. Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products. Sci Rep 2021; 11: 5823
- 27 Giacomini C, Granéli C, Hicks R. et al. The critical role of apoptosis in mesenchymal stromal cell therapeutics and implications in homeostasis and normal tissue repair. Cell Mol Immunol 2023; 20: 570-582
- 28 Neubauer M, Kuten O, Stotter C. et al. The effect of blood-derived products on the chondrogenic and osteogenic differentiation potential of adipose-derived mesenchymal stem cells originated from three different locations. Stem Cells Int 2019; 2019: 1358267
- 29 Madry H, Kon E, Condello V. et al. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 2016; 24: 1753-1762
- 30 Agarwal N, Mak C, Bojanic C. et al. Meta-analysis of adipose tissue derived cell-based therapy for the treatment of knee osteoarthritis. Cells 2021; 10: 1365
- 31 Bolia IK, Bougioukli S, Hill WJ. et al. Clinical efficacy of bone marrow aspirate concentrate versus stromal vascular fraction injection in patients with knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 2022; 50: 1451-1461
- 32 Freitag J, Bates D, Wickham J. et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med 2019; 14: 213-230
- 33 Lee WS, Kim HJ, Kim K. et al. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med 2019; 8: 504-511
- 34 Vangsness CT, Farr J, Boyd J. et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am 2014; 96: 90-98
- 35 Lamo-Espinosa JM, Mora G, Blanco JF. et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med 2016; 14: 246
- 36 Wang L, Huang S, Li S. et al. Efficacy and safety of umbilical cord mesenchymal stem cell therapy for rheumatoid arthritis patients: a prospective phase I/II study. Drug Des Devel Ther 2019; 13: 4331-4340
- 37 Pak JY. Clinical outcomes of human umbilical cord blood derived mesenchymal stem cells application in knee osteoarthritis patients. Osteoarthritis Cartilage 2019; 27 (Suppl. 1)
- 38 Koga H, Muneta T, Ju YJ. et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells 2007; 25: 689-696
- 39 Cosenza S, Ruiz M, Toupet K. et al. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 2017; 7: 16214
- 40 Satué M, Schüler C, Ginner N. et al. Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep 2019; 9: 10153