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ABSTRACT

Background Imaging biomarkers are quantitative parameters

from imaging modalities, which are collected noninvasively,

allow conclusions about physiological and pathophysiological

processes, and may consist of single (monoparametric) or mul-

tiple parameters (bi- or multiparametric).

Method This review aims to present the state of the art for

the quantification of multimodal and multiparametric ima-

ging biomarkers. Here, the use of biomarkers using artificial

intelligence will be addressed and the clinical application of

imaging biomarkers in breast and prostate cancers will be

explained. For the preparation of the review article, an exten-

sive literature search was performed based on Pubmed, Web

of Science and Google Scholar. The results were evaluated and

discussed for consistency and generality.

Results and Conclusion Different imaging biomarkers (multi-

parametric) are quantified based on the use of complementary

imaging modalities (multimodal) from radiology, nuclear med-

icine, or hybrid imaging. From these techniques, parameters

are determined at the morphological (e. g., size), functional

(e. g., vascularization or diffusion), metabolic (e. g., glucose

metabolism), or molecular (e. g., expression of prostate specif-

ic membrane antigen, PSMA) level. The integration and weight-

ing of imaging biomarkers are increasingly being performed

with artificial intelligence, using machine learning algorithms.

In this way, the clinical application of imaging biomarkers is in-

creasing, as illustrated by the diagnosis of breast and prostate

cancers.

Key Points
▪ Imaging biomarkers are quantitative parameters to detect

physiological and pathophysiological processes.

Review

354 Bäuerle T et al. Identification of impactful… Fortschr Röntgenstr 2024; 196: 354–362 | © 2023. Thieme. All rights reserved.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

Article published online: 2023-11-09

https://orcid.org/0000-0001-9248-1398
https://orcid.org/0000-0002-7341-0399
https://orcid.org/0000-0002-7341-0399
https://doi.org/10.1055/a-2175-4446


▪ Imaging biomarkers from multimodality and multipara-

metric imaging are integrated using artificial intelligence

algorithms.

▪ Quantitative imaging parameters are a fundamental com-

ponent of diagnostics for all tumor entities, such as for

mammary and prostate carcinomas.

Citation Format
▪ Bäuerle T, Dietzel M, Pinker K et al. Identification of im-

pactful imaging biomarker: Clinical applications for breast

and prostate carcinoma. Fortschr Röntgenstr 2024; 196:

354–362

ZUSAMMENFASSUNG

Hintergrund Bildgebungsbiomarker sind quantitative

Parameter aus bildgebenden Modalitäten, welche nicht-inva-

siv erhoben werden und Aussagen über physiologische und

pathophysiologische Abläufe zulassen, wobei diese aus einzel-

nen (monoparametrisch) oder mehreren Parametern (bi- bzw.

multiparametrisch) bestehen können.

Methode Die vorliegende Übersichtsarbeit soll den Stand

der Technik zur Quantifizierung von multimodalen und multi-

parametrischen Bildgebungsbiomarkern vorstellen. Hierbei

wird die Nutzung von Biomarkern mittels künstlicher Intelli-

genz thematisiert und die klinische Anwendung von bildge-

benden Biomarkern bei Mamma- und Prostatakarzinomen

erläutert. Für die Anfertigung des Übersichtsartikels wurde

basierend auf Pubmed, Web of Science und Google Scholar

eine ausführliche Literaturrecherche durchgeführt. Die Ergeb-

nisse wurden hinsichtlich Stimmigkeit und Allgemeingültig-

keit ausgewertet und diskutiert.

Ergebnisse und Schlussfolgerung Die Quantifizierung von

unterschiedlichen bildgebenden Biomarkern erfolgt aus der

Nutzung komplementärer Bildgebungsmodalitäten (multi-

modal) radiologischer und nuklearmedizinischer Techniken

bzw. von Hybridverfahren. Aus diesen Techniken werden

Parameter auf morphologischer (z. B. Größe), funktioneller

(z. B. Vaskularisierung oder Diffusion), metabolischer (z. B.

Glukosestoffwechsel) und molekularer (z. B. Expression des

Prostataspezifischen Membranantigens, PSMA) Ebene be-

stimmt. Die Integration und Wichtung von bildgebenden Bio-

markern erfolgt zunehmend mit der künstlichen Intelligenz,

wobei Algorithmen des maschinellen Lernens genutzt wer-

den. Auf diesem Wege nimmt die klinische Anwendung von

bildgebenden Biomarkern zu, was anhand der Diagnostik von

Mamma- und Prostatakarzinomen erläutert wird.

1. Introduction

Biomarkers are measurable parameters that are recorded in
blood, urine or tissue, and reveal regular biological processes as
well as pathological changes. The mission of biomarkers is to
make diseases more treatable. This can be achieved by either bet-
ter classifying disease processes and creating patient subpopula-
tions to which therapies can be tailored, or by better monitoring
and managing the response of therapies. Compared to biomar-
kers from blood, urine or tissues, imaging biomarkers allow a local
assignment of the processes and thus often have a higher sensitiv-
ity and specificity. In general, biomarkers should be quantifiable,
reproducible, inexpensive, and require as little time as possible to
collect. In this regard, imaging biomarkers often have a disadvan-
tage compared to, for example, laboratory parameters, but this
can be compensated by incorporating the collection of imaging
biomarkers into routine imaging that is performed anyway. Com-
pared to histological biomarkers, an advantage is the lack of inva-
siveness, the possibility of multiple longitudinal examinations,
and the often higher representativeness compared to small tissue
biopsies taken [1].

This review article discusses the strengths and weaknesses of
different classes of imaging biomarkers for use in disease screen-
ing, treatment planning, and therapy monitoring. It will explain
how computer-based image analysis using artificial intelligence
(AI) will create new qualities of imaging biomarkers and what the
challenges for their implementation in clinical practice are. An
extensive literature search based on Pubmed, Web of Science,
and Google Scholar was performed for the preparation of the

present work. The results were evaluated and discussed in terms
of consistency and general validity.

2. Quantification and validation of biomarkers

Non-invasive imaging biomarker detection is primarily performed
from radiological and nuclear medicine datasets of magnetic res-
onance imaging (MRI), computed tomography (CT), ultrasound
(US), positron emission tomography (PET), and single photon
emission computed tomography (SPECT), the latter being used
almost exclusively in hybrid PET/CT, PET/MRI, or SPECT/CT. The
goal is the standardized quantitative recording of imaging param-
eters (quantitative imaging biomarkers, QIB), which are as inde-
pendent as possible from the respective center, imaging tech-
nique and equipment manufacturer. To this end, the Quantitative
Imaging Biomarkers Alliance of the Radiological Society of North
America (RSNA) and the European Society of Radiology (ESR)
have proposed a cross-platform biomarker qualification profile
that allows standardization at the acquisition level [1, 2]:

A prerequisite for the use of quantitative biomarkers is com-
prehensive validation at the technical and clinical level. First, a
multilevel technical validation of the biomarkers is performed,
assessing the precision of the imaging parameters depending on
the center of data acquisition, the equipment manufacturer, the
examination protocol, and the patient preparation. The param-
eter accuracy must then be checked on the phantom and compar-
ed with the current reference standard – in most cases with the
histology after biopsy backup [3]. The final validation at the clini-
cal level includes the assessment of diagnostic and therapeutic
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value in the short-term course and the evaluation of prognostic
significance in the longer-term observation [1, 2].

For the quantitative detection of biomarkers, the definition of
a target region of interest (ROI) or a target volume of interest
(VOI) is of central importance [4]. Since the definition of the outer
limits of a lesion is subjective and depends in particular on the
experience of the examiner, automated segmentation can
increase accuracy and repeatability. Pattern recognition methods
are used for (semi-)automated segmentation, often supported by
machine learning (ML) or neural networks [5]. A consensus
recommendation from ESR and the European Organization for
Research and Treatment of Cancer (EORTC) recently presented
the following recommendations for standardized segmentation
of lesions (abbreviated from [2]):
▪ Segmentation should follow organ-specific policies and stand-

ard operating protocols, and always use the same algorithms.
▪ Direct reconstruction, iterative reconstruction, and machine

and deep learning-based reconstructions are allowed in seg-
mentation.

▪ A reference standard that uses manual or automated segmen-
tation must include multiple independent segmentations by
trained observers.

▪ When segmenting fuzzy-bordered lesions, multimodal imaging
should be used as a reference to determine the extent of the
structure in conjunction with morphologic and functional or
metabolic imaging.

Specific examples of quantification and validation of biomarkers
such as size, diffusion, and perfusion of lesions of the breast and
prostate are given in Sections 5.1 and 5.2.

3. Integration of biomarkers using artificial
intelligence

The multitude of quantitative biomarkers resulting from multi-
modal (use of complementary imaging modalities) and multipara-
metric (use of multiple contrast mechanisms) imaging with vary-
ing accuracy and relevance to the particular disease entity
requires complex statistical evaluation. For example, following
the assumption that quantitative features from radiological ima-
ges (radiomics) reflect pathophysiological processes, several hun-
dred features are extracted from radiological datasets and then
analyzed [6]. These consist of mathematical descriptors of tex-
ture, heterogeneity, and shape. Extensive computational proces-
ses are required to establish a relationship between the radiologi-
cal signature of the radiomics analysis and a clinical target
parameter. In recent years, AI algorithms have been increasingly
used to address this issue by integrating biomarkers and weight-
ing them differently.

Artificial neural networks, which can combine multiple param-
eters and perform predictive classification tasks with high accura-
cy, are often used to integrate multiple parameters from multi-
modal imaging by ML [7]. The functioning of a neural network is
similar to the human brain, in which nerve cells represent nodes
that are interconnected. Specific connections that provide advan-
tages in behavior, body movement, memory, or mental activity

are practiced and formed over time, which we call learning. Artifi-
cial neural networks are combinations of artificial nodes organized
into layers, with the prediction parameters forming the bottom
layer and the output forming the top layer. An additional inter-
mediate layer contains hidden neural nodes that receive inputs
from the predictors and form the output. The connections be-
tween these artificial neural nodes are initially randomly weight-
ed, but are adjusted as the network is trained. This allows trained
artificial networks to solve, for example, classification tasks with
high accuracy. Their accuracy can be further increased by aver-
aging the outputs of multiple models, resulting in Averaged-Mod-
el Neural Networks (avNNet). The underlying consideration is that
the bias of such a network ensemble remains unchanged, while
the error variance decreases significantly. In addition to classical
neural networks, Generative Adversarial Networks (GAN) and
Latent Space Models (LSPMs) may gain importance in the future,
which can generate synthetic data and provide prognostic infor-
mation in addition to diagnostic information [8]. For example,
ML algorithms successfully integrated QIB from multiparametric
imaging to characterize suspicious lesions of breast and prostate
carcinoma, with ML-integrated parameters showing higher sensi-
tivities and specificities than the respective individual parameters
with respect to dignity determination (▶ Fig. 1) [9, 10].

4. Clinically relevant biomarkers

The clinical relevance of quantitative biomarkers is undisputed
and is used in almost all clinical pictures that can be detected
with radiology and nuclear medicine. However, the use of defini-
tive thresholds to confidently distinguish normal from pathologic
tissue based on absolute quantitative measures is often difficult.
In this respect, semi-quantitative scoring systems are often used
for assessment, such as in multiple sclerosis with MRI [11], in lym-
phoma with PET [12], or in liver tumors with CT/MRI [13].

The simplest quantitative measurement is the recording of size
or diameter, for example used for staging and follow-up of solid
tumors in the Response Evaluation Criteria in Solid Tumors
(RECIST) [14]. The use of volumes instead of size measurement is
not currently used in routine clinical practice, although several
studies have shown the prognostic superiority of this method
[15]. However, robust automated segmentation is needed for
clinical implementation of volumetry of target structures. Quanti-
tative biomarkers in breast and prostate carcinomas are discussed
below.

5. Clinical validation

5.1 Breast carcinoma

Breast cancer is the most common cancer affecting women and
was responsible for 684 996 deaths worldwide in 2020 [16].
Breast diagnostic imaging is essential in the screening and treat-
ment of the disease [17, 18]. Digital mammography (including
more advanced techniques such as digital tomosynthesis and con-
trast-enhanced mammography), ultrasound and MRI are the main
methods of breast diagnostic imaging [17, 18]. Imaging biomar-
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kers of breast carcinoma are widely used in both routine clinical
practice and scientific research [19]. In this section we present
essential imaging biomarkers of breast cancer and discuss their
future development using selected examples.

Breast density is the most important imaging biomarker of
breast cancer [20]. At the same time, it is considered one of the
most important and best-validated QIB ever. Breast density
describes the ratio of fibroglandular and fatty tissue of the breast.
In addition to limited sensitivity of mammography, women with
higher breast density have a higher risk of developing breast can-
cer in the future [20]. In clinical practice, breast density is assessed
in four categories (A to D) [21]. Using an automated volumetric
analysis, breast density can be measured as QIB. Various software
tools are now available to automatically quantify breast density
and are widely used in clinical and scientific practice.

The randomized controlled DENSE trial is an example of the
central importance of QIB in breast diagnostic imaging. Based on
the QIB “extremely dense breast” (measured in an automated
fashion), women were offered screening MRI in addition to X-ray
mammography. This risk stratification made it possible to detect
significantly more breast carcinomas and, at the same time, re-
duce the rate of interval carcinomas. Based on these results, the
European Society of Breast Imaging (EUSOBI) now recommends

that women aged 50 to 70 years with extremely dense breasts
be offered breast MRI examinations every 2 to 4 years [22].

In addition to this quantitative assessment of breast tissue,
AI-assisted structural analysis of the parenchyma is increasingly
coming into scientific focus [23, 24]. Available results suggest
that this allows for improved risk profiling [23]. However, the cur-
rent data on this QIB should still be interpreted as preliminary.
Comprehensive clinical validation is still pending [23, 24].

From a molecular imaging perspective, expression of estrogen
receptors (ER), progesterone receptors (PR), and HER2 receptors
in breast tumors is an important biomarker in breast cancer.
They play a significant role in treatment decisions and prognosis
assessment of this tumor entity [25].

Tumor vascularization is a typical feature of breast carcinoma.
Patterns of tumor vascularization are considered imaging biomar-
kers of breast carcinoma [19]. Dynamic contrast-enhanced (DCE)
MRI has been established for the analysis of tumor vasculariza-
tion. The method provides imaging biomarkers for both detection
and characterization (“benign or malignant?”) of suspicious find-
ings [17, 19]. Semiquantitative and semantic criteria for tumor
vascularization are well established in clinical practice [26, 27]. In
contrast, QIBs promise a more objective analysis of tumor vascu-
larization and are therefore of utmost interest [28]. Despite the

▶ Fig. 1 Integration of multiparametric breast MRI data by an AI tool to predict malignancy probability. Shown is a clinical example and the cor-
responding results of the interactive AI tool. Clinical example of a 55-year-old female patient. This shows a 21 × 18mm lesion in subtracted T1w
after application of gadolinium (A). A type 2 curve was present. Analysis of signal intensity in T2w (B) revealed a signal intensity value of 4.6. The
apparent diffusion coefficient (C) was 1015 × 10–6mm2/s. Histopathology: G3 invasive breast carcinoma nonspecific type. User interface of the in-
tegrative AI tool (D): In the left column, the values from the clinical case are already entered. From this, the integrative AI tool first determines a
binary diagnosis (here: “Cancer”), which is differentiated with a statistical measure (“false positive rate”). At the same time, the diagnostic window
of the finding is shown on the area under the receiver operating curve. Specificity, positive predictive value (PPV) together with corresponding
confidence interval (CI) finally enable.
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extensive research activities in the last decades, no such QIB has
yet found its way into clinical routine. Sequence design, longer
scan time, complex post-processing, and lack of standardization
of available methods are considered the biggest hurdles to this.

Tumor size is a classic QIB of breast carcinoma. Larger tumors
are usually associated with a worse prognosis [29]. In addition,
tumor size is pivotal in assessing the response to therapy [30].
This explains why noninvasive, image-based quantification of
tumor size is critical for patient management. In principle, all
methods of breast diagnostic imaging are suitable for the assess-
ment of tumor size [17, 18]. However, MRI allows particularly
accurate, three-dimensional, and superposition-free quantifica-
tion of tumor size [17, 30]. In addition to the structural assess-
ment of tumor size, the importance of functional tumor size is
increasingly coming to the fore. By combining vascularization
and volumetry, a functional analysis of tumor heterogeneity is
possible. Current data suggest that functional tumor volumetry
provides diagnostically important and prognostically relevant
additional information (▶ Fig. 2) [31]. However, the challenges
described in quantifying tumor vascularization also apply to this
approach. Accordingly, a broad clinical application of functional
tumor volumetry is not yet foreseeable at this stage.

Morphology is an essential imaging biomarker in breast cancer
diagnosis. Both the morphology of the carcinoma itself and its
tumor habitat provide important diagnostic and prognostic infor-
mation [19]. These allow identification of imaging phenotypes
that support both characterization (“benign or malignant?”) and
subtyping (“in situ or invasive carcinoma?” “aggressive carcino-
ma?” etc.). Such phenotypes derived from imaging are objectified
by the Breast Imaging Reporting and Documentation System
(BI-RADS) [19]. The Kaiser score can be determined from the
BI-RADS MRI finding. A comprehensive validated and widely used
methodology that documents imaging-derived phenotypes as a
simple metric [27, 32]. Notwithstanding the advantages men-
tioned above, the BI-RADS and Kaiser scores are based on visual
analysis. Therefore, the development of QIB for more objective
morphological analysis of breast carcinomas is promising. Cur-
rently, diffusion-weighted imaging (DWI) is the closest approach
to this claim [26]. The DWI determines the apparent diffusion
coefficient (ADC). This QIB allows a quantitative evaluation of the
tissue microstructure [26]. Clinically, the ADC is already used for
tissue characterization: A high ADC value is considered a reliable
exclusion criterion for the presence of breast cancer (cut-off:
1.5*10–3mm2/s) [33]. Of critical importance to the management
of breast carcinoma is the early differentiation between invasive
and in-situ stages. For this reason, initial results are promising,
showing that ADC can predict breast cancer invasiveness with
high accuracy.

5.2 Prostate carcinoma

Prostate carcinoma is the second most common cancer in men,
with an incidence of 14% and a mortality of 7 % [16]. Several mul-
ticenter studies have demonstrated the superiority of MRI-guided
biopsy over standard ultrasound-guided biopsy (PRECISION [34],
MRI-FIRST [35], and PROMIS [36]), so multiparametric MRI of the
prostate (mpMRI) is currently mostly performed before biopsy

according to guidelines. Patients with low-grade prostate carcino-
ma are known to often not receive direct therapy, but are regular-
ly monitored clinically regarding their laboratory values and also
with MRI follow-up as part of active monitoring [37]. The soft tis-
sue contrast of CT is not sufficient to show the tissue differences
within the prostate for adequate diagnosis of prostate carcinoma
[38]. In the context of detecting biochemical recurrence, CT is
often used for molecular imaging of prostate specific membrane
antigen (PSMA) as a hybrid technique (PET/CT). The two most
common methods of prostate imaging are ultrasound and
mpMRI, with mpMRI currently having the highest sensitivity.

Conventional ultrasound is well suited to visualize the prostate
boundaries and prostate volume. However, internal contrast is not
sufficient for detecting tumor tissue [38]. Several recent tech-
niques such as super-resolution ultrasound, ultrafast Doppler
sonographic techniques, ultrasound elastography, KM-enhanced
sonography (CEUS) and histoscanning have coined the term
multiparametric ultrasound (mpUS) and raised the sensitivity
[39]. However, a randomized controlled trial of 306 patients
demonstrated superiority of mpMRI [40]. Therefore, the following
focuses primarily on the QIB of mpMRI:

According to the Prostate Imaging Reporting & Data System
version 2.1 (PI-RADS) classification, a lesion size of 1.5 cm or
larger is used as a criterion for the PI-RADS 5 category. However,
this measurement is determined in different sequences depend-
ing on the prostate zone, i. e., each on the primary sequence,
i. e., T2w for transition zone and DWI for peripheral zone [41].
Size measurement is an important element of both baseline and
follow-up studies in this regard. The size of a tumor lesion corre-
lates with the likelihood of disease progression during active mon-
itoring [42], extraprostatic extension, lymph node metastases,
and ultimately survival [43], and is also part of the PI-RADS system
with a threshold of 15mm.

Currently, mpMRI consists of three components: T2-weighted
imaging, diffusion-weighted imaging (DWI), and DCE MRI.
(▶ Fig. 3). DCE MRI provides information on tumor neovasculari-
zation. While the PI-RADS version v1 [44] still used the curve pro-
gression of DCE MRI semi-quantitatively, the significance has de-
creased in subsequent PI-RADS versions. Currently (PI-RADS v2.1),
only visual and qualitative estimation of early BM uptake compar-
ed to surrounding tissue is considered [41]. QIBs derived from
heuristic quantitative DCE parameters, such as time to peak
(TTP), are being investigated in studies [45], but have at times
not found their way into routine clinical practice. The usefulness
of DCE MRI is controversial, and some studies attribute it to only
a minor contribution to the diagnostic statement [44], although it
currently remains an integral part of mpMRI. A recent retrospec-
tive quantitative study of mpMRI directly contrasted the value and
showed superiority of ADC over DCE MRI parameters [46].

MR spectroscopy (MRS) was traditionally used and was also a
component of prostate mpMRI in PI-RADS v1 [44], but is now not
routinely performed because of the high expertise required, the
time required, and the high frequency of limited data quality.
Among the many other MR contrasts investigated in research,
MRI relaxometry or MR fingerprinting [47] should be mentioned,
although their diagnostic value has not yet been adequately inves-
tigated.
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From the current clinical and research experience, the quantita-
tive ADC value should be mentioned as probably the best-studied
QIB of the prostate [47], which correlates with the histological
grade. Modifications of the mathematical ADC model with the use
of additional b values have also been investigated, for example, in
the context of intravoxel incoherent motion (IVIM) [48] and kurtosis

imaging [49]. The well-known problem here remains the reproduci-
bility of the results, as it is generally known that ADC values depend
on the MRI scanner used and the MRI sequence. The benefit of DWI
images with b-values exceeding the standard (approx. 1400 s/mm²,
also possible calculated by extrapolation) has been refuted in stud-
ies [46]. This indicates that candidates for new quantitative biomar-

▶ Fig. 2 Integration of multiparametric data for risk profiling of breast carcinoma in a clinical example (A–C). Corresponding Kaplan-Meier curves
(D) illustrate the improvement in risk profiling compared with an established prognostic index (Nottingham prognostic Index: NPI). Above (A–C)
the volumetric analysis of the tumor in a representative slice, where the target structure is defined by a rectangle (A). Multi-parametric MRI allows
analysis of the vital portions of the tumor. These are marked in color. Each voxel of the tumor is further characterized by means of a signal intensity/
time curve (B). Thus, volumetric analysis of vascularization of the vital tumor is possible (simplified in C). Bottom (D) the improvement of risk pro-
filing by integrating multiparametric MRI data into the NPI. This combined model is called NPI+. Note the optimized identification of high-risk pa-
tients using NPI+, which was significantly superior to the established prognostic index (adopted from [53]).
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kers need to be carefully screened in studies for their contribution
compared with established criteria.

The extraction and evaluation of hundreds of quantitative,
fixed parameters in terms of radiomics analysis, as already men-
tioned, have also been used in the diagnosis of prostate carcino-
ma in the context of studies [50]. However, a serious restriction
here is also the limited reproducibility and repeatability of these
basic parameters [51]. In recent years, the trend has evolved
away from these established parameters towards neural networks
that independently “learn” the parameters. Such AI tools for the
prostate already exist and some are commercially available with
CE marking. A website of the Radboud University Medical Center
(Netherlands) [AI for Radiology – an implementation guide] lists
commercial AI software, which is supposed to provide assistance
in report generation, segmentation and tumor detection. For the
AI tools listed, there is currently insufficient clinical evidence that
they have comparable performance to radiologists. Only individ-
ual studies currently show comparable performance [52]. How-
ever, larger validation studies, especially with multi-center data
are still scarce and needed in the future.

6. Summary and outlook

The quantification of multimodal and multiparametric imaging
biomarkers allows a standardized approach to record physiologic-
al and pathophysiological processes. Due to the large number of
imaging biomarkers, AI methods are increasingly being used to

develop ML algorithms that allow specific diagnostic conclusions
to be made.

The integration of parameters at the morphological, functional,
metabolic, and molecular levels is important because complemen-
tary information from disease processes is thus identified. By com-
bining imaging parameters of different qualities, it is possible to
obtain the most comprehensive view possible of tissue changes,
such as in breast and prostate carcinoma. In these tumors, in addi-
tion to tumor size and extension (morphological level), time-vary-
ing parameters such as blood flow and diffusion (functional or
metabolic level) and ultimately the expression of disease-specific
proteins such as PSMA (molecular level) play an essential role.

We are currently observing a steady improvement of pattern
recognition methods for (semi-) automated detection of target
organs and regions. In the future, these advances will lead to
broader integration of imaging biomarkers into clinical practice.
This, in turn, will significantly increase the acceptance and value
of imaging biomarkers in the coming years.
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