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Abstract Background Fibrinogen variants as a result of alternative messenger RNA splicing or
protein degradation can affect fibrin(ogen) functions. The levels of these variants
might be altered during coronavirus disease 2019 (COVID-19), potentially affecting
disease severity or the thrombosis risk.
Aim To investigate the levels of fibrinogen variants in plasma of patients with COVID-19.
Methods In this case-control study, wemeasured levels of functional fibrinogen using
the Clauss assay. Enzyme-linked immunosorbent assays were used to measure antigen
levels of total, intact (nondegraded Aα chain), extended Aα chain (αE), and γˊ
fibrinogen in healthy controls, patients with pneumococcal infection in the intensive
care unit (ICU), ward patients with COVID-19, and ICU patients with COVID-19 (with
and without thrombosis, two time points).
Results Healthy controls and ward patients with COVID-19 (n¼10) showed similar
fibrinogen (variant) levels. ICU patients with COVID-19 who later did (n¼ 19) or did not
develop thrombosis (n¼18) and ICU patients with pneumococcal infection (n¼ 6) had
higher absolute levels of functional, total, intact, and αE fibrinogen than healthy
controls (n¼ 7). The relative αE fibrinogen levels were higher in ICU patients with
COVID-19 than in healthy controls, while relative γˊ fibrinogen levels were lower. After
diagnosis of thrombosis, only the functional fibrinogen levels were higher in ICU
patients with COVID-19 and thrombosis than in those without, while no differences
were observed in the other fibrinogen variants.
Conclusion Our results show that severe COVID-19 is associated with increased levels
of αE fibrinogen and decreased relative levels of γˊ fibrinogen, which may be a cause or
consequence of severe disease, but this is not associated with the development of
thrombosis.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the cause of coronavirus disease 2019 (COVID-
19), mainly targeting the respiratory tract, leading to cough-
ing, fever, and in severe cases, pneumonia. In these severe
cases, an increased incidence of thrombotic complications
has been reported.1 The disease burden and mortality of
thrombotic diseases are influenced by the architecture and
stability of a thrombus.2 Upon cleavage of fibrinogen by
thrombin, fibrin monomers form. These fibrin monomers
start polymerizing, finally forming fibrin fibers that are
cross-linked by factor (F)XIII resulting in a stable fibrin
network, one of the main components in a thrombus.3

Fibrinogen is a glycoprotein of 340 kDa produced in the liver
and consists of two sets of three different polypeptide
chains: Aα, Bβ, and γ.4 Variation in the fibrinogen molecule
occurs due to genetic polymorphisms, alternativemessenger
RNA (mRNA) processing, proteolytic cleavage, and posttrans-
lational modifications.5,6 The structure of the fibrin network
is affected by these fibrinogen variants.

Proteolytic cleavage of the C-terminus of one or two of the
Aα chains leads to low-molecular-weight (LMW, 305kDa)
and low-molecular-weight prime (LMWˊ, 270 kDa) fibrino-
gen, respectively.7 The part of the Aα chain removed during
this cleavage contains functional domains affecting polymer-
ization and lateral aggregation of protofibrils, thereby influ-
encing the thickness of the fibrin fibers and the fibrin
network structure.8,9 Fibrin fibers formed from LMW fibrin-
ogen are indeed thinner than fibrin fibers formed from high-
molecular-weight fibrinogen,10 resulting in a denser fibrin
network.11 In addition, the C-terminus of the Aα chain
contains binding sites for endothelial cells, plasminogen,
and factor XIII, thereby also affecting other processes in
which fibrinogen or fibrin is involved.11

Other common variants of fibrinogen occur as a result of
alternative mRNA splicing, such as an extension of the Aα
chain (αE fibrinogen). αE fibrinogen represents typically 1 to
2% of the total fibrinogen molecules (as measured by quan-
titative western blot) and is only present as a homodimer of
two extended Aα-chains.12 It is produced upon splicing an
extra exon into the Aα-chain mRNA, leading to an additional
globular domain at the C-terminus.12,13 This extension con-
tains a binding site for β2-integrins, possibly enabling leu-
kocytes to bind to fibrinogen. This additional domain also
affects fibrin polymerization, resulting in thinner fibers,
increased branching, and an increased stiffness of clots
prepared from purified αE fibrinogen.13

The mRNA splice variant γˊ derives from the replacement
of the last four amino acids of the γ chain by 20 other amino
acids, leading to an extended γ chain.14 Between 5 and 15% of
fibrinogenmolecules are heterodimers of γˊwith the normal
γ chain (γA/γˊ) and less than 1% are homodimers of γˊ.15 The
variation occurs in the D-region of the fibrinogen molecule,
thereby affecting fibrin polymerization, decreasing platelet
binding and increasing binding of thrombin and FXIII.16–18

Studies have reported thinner fibers and a more branched
network in clots made with γA/γˊ fibrinogen compared to

clots prepared from γA/γA fibrinogen.19–21 γˊ fibrinogen
levels can vary largely between individuals and are associat-
ed with various diseases.22–27

Since fibrinogen variants were previously associated with
various thrombotic diseases and an altered fibrin network
structure, we hypothesized that these fibrinogen variants
would be increased in patients with severe COVID-19 and
thrombosis. Therefore, we investigated whether levels of
functional fibrinogen, total fibrinogen, intact fibrinogen, γˊ
fibrinogen, and αE fibrinogen are altered in COVID-19 and
whether this can explain why some patients with COVID-19
develop thrombosis and others do not.

Methods

Study Design and Patient Population
This study was a case-control study conducted in the Eras-
musMedical Center in Rotterdam, the Netherlands, as part of
the Dutch COVID and Thrombosis Coalition.28 The patients
and laboratory measurements are described previously.29

Briefly, we collected citrated platelet-poor plasma samples
between April and December 2020. Samples were collected
from patients with COVID-19 admitted to the intensive care
unit (ICU) who did and did not develop thrombosis during
their stay at the ICU as confirmed by positive or negative
computed tomography pulmonary angiograms (performed
for all patients with COVID-19) and compression ultrasound
of the extremities (only performed if symptoms compatible
with venous thrombosis were present). Samples were col-
lected before and after diagnosis of thrombosis or at similar
time points in ICU patients without confirmed thrombosis.
Additionally, we collected plasma frompatientswith COVID-
19 admitted to general wards who did not have thrombosis,
SARS-CoV-2-negative ICU patients with pneumococcal in-
fection, and healthy controls.30 Study protocols were in
accordance with the Declaration of Helsinki and were ap-
proved by the Medical Ethics Committee of ErasmusMedical
Center (healthy controls: MEC-2004-251; pneumococcal ICU
patients: MEC-2017-417; COVID-19 patients: METC-2020-
0758). We obtained written informed consent from each
healthy control and ICU patient with pneumococcal infec-
tion. An opt-out procedure was in place for the patients with
COVID-19. Functional fibrinogen levelsweremeasured using
the Clauss assay (Thrombin Reagent, Siemens Healthineers,
Erlangen, Germany) on the Sysmex CS5100 coagulation
analyzer (Siemens Healthcare Diagnostics B.V., Newark, Del-
aware, United States).

Fibrinogen Variant ELISAs
We used enzyme-linked immunosorbent assays (ELISAs)
based on monoclonal antibodies to measure antigen levels
of total, intact, γˊ and αE fibrinogen. First, 96-well MaxiSorp
plates (439454, Thermo Fisher Scientific, Waltham, Massa-
chusetts, United States) were coated overnight at 37°C with
120 µL coating antibody in phosphate-buffered saline (PBS).
A fibrinogen polyclonal antibody (GaHu/Fbg/7S, Thermo
Fisher Scientific) (10 µg/mL) and the G8 monoclonal anti-
body targeting the C-terminus of the Aα chain (FB-G8-1-2,

TH Open Vol. 7 No. 3/2023 © 2023. The Author(s).

Fibrinogen Variants in COVID-19 de Vries et al.e218



Quickzyme, Leiden, the Netherlands) (10 µg/mL) were used
as coating antibodies for total and intact fibrinogen, respec-
tively. For both ELISAs, reference lines were prepared using
purified human fibrinogen (FIB3, Enzyme Research Laborato-
ries, SouthBend, Indiana, United States). The 2.G2.H9 antibody
(1 µg/mL) (sc-81620, Santa Cruz, Dallas, Texas, United States)27

and αE antibody (1 µg/mL) (ab247586, Abcam, Cambridge,
United Kingdom) were used as coating antibodies for γˊ
fibrinogen and αE fibrinogen, respectively. Reference lines
were prepared with Peak 2 (P2 FIB, Enzyme Research Labora-
tories) and rhFib αE (kind gift of Fibriant BV). After incubation
of 100 µL diluted plasma (independent triplicates per sample)
for 1hour at 37°C, plates were washed using PBS with 0.05%
Tween 20 (524653, Merck Millipore, Burlington, Massachu-
setts, United States) and incubated with Y18/PO conjugate
(FB-Y18-4, Quickzyme) (1:10.000� ) for 1hour at 37°C. After
thorough washing, each well was incubated with 100 µL 3,3′-
5,5′-tetramethylbenzidine (TMB) (TMB Ultra, WD3243711,
34029, Thermo Fisher Scientific). To stop the substrate reac-
tion, 100 µL of 2M sulfuric acid was added to each well, after
which the absorbance was measured at 450nm using the
Multiskan GO Microplate Spectrophotometer (Thermo Fisher
Scientific). Results were calculated based on the four-parame-
ter logistic fit using the SkanIt software (Thermo Fisher
Scientific). Relative levels of αE and γˊ fibrinogen were calcu-
lated as percentage of total fibrinogen measured using the
GaHu/Fbg/7S antibody.

Fibrin Network Characteristics
To study the characteristics of the fibrin network, clots were
prepared from the citrated platelet-poor plasma and imaged
as described previously.29 Plasma clot lysis time was mea-
sured to investigate the susceptibility of plasma clots to
fibrinolysis, as described previously.29

Statistical Analysis
Normally distributed data are shown as mean� standard
deviation, not-normally distributed data as median [25th–-
75th percentile], and categorical data as n (%). To test for
differences between multiple groups, one-way ANOVA (nor-
mally distributed data), Kruskal–Wallis test (not-normally
distributed data), or Chi-square test (categorical data) was
used with post-hoc Tukey’s tests. Changes in variables be-
tween the two time points were evaluated using the paired
students’ t-test (normally distributed data) or Wilcoxon
signed-rank test (not-normally distributed data). Correla-
tions were assessed using Spearman’s rank correlation. We
used pairwise deletion in case of missing data. Statistical
analyses were performed using IBM SPSS Statistics v25 (IBM,
Armonk, New York, United States) and GraphPad Prism
version 8.2.1 (GraphPad Software, San Diego, California,
United States).

Results

Baseline Patient Characteristics
Patient characteristics at the first time point are shown
in ►Table 1. Of the 19 ICU patients with COVID-19 and

confirmed thrombosis, 16 had pulmonary thrombosis, 1
deep venous thrombosis, 1 pulmonary thrombosis in com-
bination with deep venous thrombosis, and 1 jugular vein
thrombosis. The diagnosis of thrombosis in the ICU patients
with COVID-19 and thrombosis was made after a median of
10 [6–17] days in the ICU. Furthermore, we had plasma
samples from 18 ICU patients with COVID-19 without con-
firmed thrombosis, 10ward patientswith COVID-19without
confirmed thrombosis, 6 ICU patients with pneumococcal
infection, and 7 healthy controls. Mean age and sex were
comparable, while body mass index was slightly higher in
ward and ICU patients with COVID-19 than in healthy con-
trols (►Table 1). Results from laboratory measurements can
be found in ►Table 1.

Levels of Fibrinogen Variants
First, we analyzed plasma samples from healthy volunteers
and from all patients collected at the first available time
point after admission to the hospital (►Fig. 1 and
►Supplementary Table S1). Levels of fibrinogen and fibrino-
gen variants were not significantly different inward patients
with COVID-19 compared to healthy controls. In ICU patients
with COVID-19 with and without thrombosis and in ICU
patients with pneumococcal infection, we observed signifi-
cantly higher absolute levels of functional fibrinogen, total
fibrinogen, intact fibrinogen, and αE fibrinogen than in
healthy controls. Levels of functional fibrinogen, intact fi-
brinogen, and αE fibrinogen were also significantly higher in
all ICU patients than in ward patients with COVID-19. Rela-
tive levels of αE fibrinogen were significantly higher in ICU
patients with COVID-19 with and without thrombosis than
in healthy controls. Finally, the absolute levels of γˊ fibrino-
gen were not different among the different groups. The
relative levels of γˊ fibrinogen showed a trend toward lower
levels in patients with COVID-19, which only reached statis-
tical significance in ICU patients with COVID-19 without
thrombosis compared to healthy controls. No differences in
fibrinogen (variant) levels were observed between ICU
patients with COVID-19 who did and did not develop
thrombosis.

From ICU patients with COVID-19, plasma samples were
collected at a second time point as well, namely the first
available sample after the diagnosis of thrombosis (median
of 11 [7–18] days since ICU admission) or at a similar time
point for patients without thrombosis (median of 12 [9–15]
days since ICU admission) (►Fig. 2 and ►Supplementary

Table S1). In these plasma samples, we observed significantly
higher functional fibrinogen, total fibrinogen, intact fibrino-
gen, and relative and absolute levels of αE fibrinogen in both
ICU patients with COVID-19 with and without thrombosis
than in the healthy controls. Absolute levels of γˊ fibrinogen
were similar among the groups. The decrease in relative
levels of γˊ fibrinogen was more pronounced in the samples
taken on the second time point and now reached significance
in all ICU patients with COVID-19 (with or without throm-
bosis) compared to healthy controls. No differences were
observed in the absolute or relative levels of fibrinogen
variants between ICU patients with COVID-19 with and
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without thrombosis, except for a small significant difference
in functional fibrinogen levels.

The relative levels of γˊ fibrinogen significantly decreased
in both ICU patients with COVID-19 with and without
thrombosis between the first and second time point
(►Fig. 3), while levels of functional, total, intact, and αE

fibrinogen did not change (data not shown). The decrease in
the relative level of γˊ fibrinogen was not correlated with the
number of days between the two plasma samples (data not
shown).

Correlations of Fibrinogen Variant Levels with Other
Factors, Fibrin Network Structure, and Fibrinolysis
Functional fibrinogen levels correlated strongly with antigen
levels of total and intact fibrinogen (►Supplementary

Table S2). These fibrinogen levels showed correlations with
C-reactive protein, interleukin-6, procalcitonin, plasminogen
activator inhibitor 1, FVIII, FXIII, fibrin network density,
turbidity change, and clot lysis time. The relative levels of
αE fibrinogen were positively correlated with Clauss and
intact fibrinogen levels, while the relative levels of γˊ fibrin-
ogen were not correlated to fibrinogen levels. The relative
levels of αE fibrinogen showed weak correlations with the

turbidity change and clot lysis time, while the relative levels
of γˊ fibrinogen were weakly correlated with fiber diameter.

Discussion

Besides strongly elevated absolute levels of functional, total,
and intact fibrinogen in ICU patients with COVID-19, we also
showed that ICU patients with COVID-19 had significantly
increased absolute and relative levels of αE fibrinogen com-
pared to healthy controls. Furthermore, fibrinogen (variant)
levels were similar in ICU patients with pneumococcal
infection and ICU patients with COVID-19, suggesting these
increases in fibrinogen (variant) levels may be a more
general observation in severe disease. Between ICU patients
with COVID-19 with and without thrombosis, we did not
observe differences in levels of αE fibrinogen and γˊ fibrino-
gen, but we did observe a small significant difference in the
functional fibrinogen level. Finally, the relative levels of αE

fibrinogen and γˊ fibrinogen were only weakly associated
with fibrin network characteristics. To our knowledge, no
other studies exist that measured αE fibrinogen levels in
patients. It has only been shown that the percentage of αE

fibrinogen is around 3.3% in newborns, which is higher than

Fig. 1 Levels of fibrinogen (variants) in plasma collected from healthy controls, COVID-19 ward patients with COVID-19, pneumococcal ICU
patients, ICU patients with COVID-19 without thrombosis (COVID-19 ICU �), and ICU patients with COVID-19 and thrombosis before their
diagnosis of thrombosis (COVID-19 ICUþ). �p< 0.05, ��p< 0.01, ���p< 0.001, ����p< 0.0001. COVID-19, coronavirus disease 2019; ICU, intensive
care unit.
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the 1 to 2% found in adults assessed by quantitative western
blot.31 The mechanism of the increased relative levels of αE

fibrinogen in ICU patients with COVID-19 remains specula-
tive. It may be increased synthesis due to an altered alterna-
tive mRNA splicing in severe COVID-19. In addition, αE

fibrinogen is suggested to be less susceptible to proteolytic
degradation than the normal Aα chain, possibly leading to
increased relative levels in situations with upregulated syn-
thesis of fibrinogen.32 Finally, since we did not see a differ-
ence in relative and absolute levels of αE fibrinogen between
patients with and without thrombosis, we hypothesize that
there is no causal relation between αE fibrinogen and the risk
of thrombosis.

Previous studies have shown increased relative levels of γˊ
fibrinogen in patients during the acute phase of ischemic
stroke.25 Farrell et al reported high absolute levels of γˊ
fibrinogen in patients with COVID-19, but did not report
relative levels.33 We initially hypothesized that severe
COVID-19 would also lead to higher relative levels of γˊ
fibrinogen, possibly due to severe inflammation. However,
we saw decreased relative levels of γˊ fibrinogen, no correla-
tion between inflammatory markers and relative levels of γˊ
fibrinogen, and no difference in absolute levels of γˊ fibrino-
gen between the different groups. The mechanism explain-
ing the decreased relative levels of γˊ fibrinogen in ICU
patients with COVID-19 is unknown. It is hypothesized

Fig. 2 Levels of fibrinogen (variants) in plasma samples collected from healthy controls, patients with COVID-19 without thrombosis (COVID-19
ICU �), and ICU patients with COVID-19 and thrombosis after their diagnosis of thrombosis (COVID-19 þ). �p< 0.05; ��p< 0.01; ��p< 0.001;
����p< 0.0001. COVID-19, coronavirus disease 2019; ICU, intensive care unit.

Fig. 3 Comparison of the levels of γˊ fibrinogen in ICU patients with COVID-19 with and without thrombosis at two time points. �p< 0.05,
��p< 0.01. COVID-19, coronavirus disease 2019; ICU, intensive care unit.
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that alternative mRNA splicing resulting in γˊ fibrinogen
occurs when an alternative polyadenylation site within the
gene is used.34,35 Previous studies have suggested that viral
proteins in influenza can promote or interfere with poly-
adenylation.36 This observation leads to the hypothesis that
proteins of SARS-CoV-2 can possibly affect the process of
polyadenylation in the fibrinogen genes and thereby reduce
the relative level of γˊ fibrinogen. Furthermore, it is possible
that there is increased consumption of γˊ fibrinogen in SARS-
CoV-2 infection, for example, due to binding of γˊ fibrinogen
to viral proteins or proteins involved in inflammatory
responses.37 Interestingly, αE fibrinogen and γˊ fibrinogen
did not correlate well in the current study. This observation
suggests different mechanisms regulating the occurrence or
stability of both mRNA splice variants and that these are
differently affected by severe disease.

Interestingly, the relative and absolute levels of γˊ fibrin-
ogen significantly decreased from thefirst to the second time
point in ICU patients with COVID-19. The decrease in the
relative levels occurred both in patients who did or did not
develop thrombosis. Therefore, it is unlikely to be caused by
the development of thrombosis.

Contradictory to the apparent effects of the fibrinogen
variants on fibrin network structure seen in previous stud-
ies,13,19–21 relative levels of the mRNA splice variants in our
study were only weakly correlated with fibrin network
characteristics. Previously, purified fibrinogen variants
were studied instead of plasma samples. Plasma from the
patients in the current study showed large variations in other
(coagulation) factors, which can influence fibrin network
characteristics and may explain why the association in our
study is quite weak. The current correlations need confirma-
tion in larger and/or other patient groups. Together with the
finding that relative and absolute levels of αE fibrinogen and
γˊ fibrinogen were not significantly different between ICU
patients with COVID-19 with and without thrombosis, these
results suggest that the development of thrombosis in
patientswith COVID-19 cannot be explained byaltered levels
of αE and γˊ fibrinogen. Also, the observation that ICU
patientswith pneumococcal infection showed similar fibrin-
ogen (variant) levels to ICU patients with COVID-19 suggests
that these levels cannot explain the increased development
of thrombosis in severe COVID-19.

The higher functional fibrinogen levels as measured using
theClaussassay in ICUpatientswithCOVID-19andthrombosis
compared to ICU patients with COVID-19without thrombosis
wereonly seen after the diagnosis of thrombosis andnot at the
first time point. In addition, no change in antigen levels of
(total) fibrinogen was found between these two groups using
the ELISAs. This points to the possibility that other coagulation
factors than fibrinogen are increased or more active, resulting
in higher results in the Clauss assay, and potentially contribut-
ing to the development of thrombosis.

Finally, wewere interested infibrinogenvariants caused by
the degradation of the α-chain in the circulating blood. This
degradation results in LMWor LMWˊ fibrinogen. Currently, it
is not clear what causes this degradation and which enzymes
are responsible.11 Our study shows very similar patterns for

intact and total fibrinogen in the different groups, suggesting
the degree of degradation of the α chain is not altered in ICU
patients with COVID-19 or pneumococcal infection.

Our study has some limitations. The ICU patients with
pneumococcal infection had a bacterial instead of a viral
infection. Still, this control group was homogenous and
showed similar symptoms to patientswith COVID-19. There-
fore, we considered this as our best available control group.
Another potentially important difference between the
groups is medication use. Anticoagulation therapy and
anti-inflammatory drugs were for example differently used
in the different groups, and even within the patients with
COVID-19 due to changes in treatment strategies. Therefore,
these differences could have affected levels of fibrinogen
(variants). In addition, even though there was no clinical
suspicion of thrombosis in the ICU patients with pneumo-
coccal infection, we cannot entirely exclude the possibility
that undetected thrombosis might have developed. Further-
more, the small sample sizes are a limitation. It is possible
that stronger associations or differences can be observed in
larger samples, which would also make it possible to adjust
for covariates in the analysis. We classified ICU patients with
COVID-19 into two groups based on the diagnosis of throm-
bosis upon imaging. However, it is the questionwhether this
classification is really possible. It might be that all ICU
patients with COVID-19 will eventually develop micro-
thrombi that are not always detected. Finally, patients
from the first and second COVID-19 waves were used, so
the question remains whether these results can be general-
ized to patients with different viral variants.

Conclusion

Our results show that severe COVID-19 is associated with
increased levels of functional, total, intact, and αE fibrinogen
and decreased relative levels of γˊ fibrinogen, whichmay be a
cause or consequence of severe disease. Since we only find a
difference in functional fibrinogen and not in fibrinogen
variant levels between ICU patients with COVID-19 with
and without thrombosis, alterations in levels of fibrinogen
variants cannot explain or predict the development of
thrombosis.
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