
Introduction
Colorectal cancer (CRC) is the third most commonly diagnosed
malignancy and the second leading cause of cancer related-
death in the world [1]. CRC develops from precancerous polyps
through several (epi)genetic pathways [2]. Colonoscopy is con-

sidered the gold standard for detection and diagnosis of CRC
and its precursor lesions [3, 4]. Moreover, colonoscopy provides
opportunities for endoscopic resection of precancerous polyps,
which is known to be effective to prevent CRC [5].
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ABSTRACT

Colonoscopy is considered the gold standard for detection

of colorectal cancer and its precursor lesions. However, co-

lonoscopy outcomes may differ depending on the endos-

copist performing the procedure. Among others, this re-

lates to differences in ability of endoscopists to accurately

assess polyp characteristics that are essential for clinical de-

cision making. These characteristics concern polyp loca-

tion, size and morphology, as well as several histological

polyp features that can be predicted based on polyp pheno-

type. Polyp assessment with aid of computer-aided diagno-

sis (CADx) systems might provide opportunities to optimize

general polyp assessment accuracy. However, a broad over-

view of available studies concerning performance of CADx

systems for diagnosis of different polyp characteristics and

histological features is lacking. Hence, within this narrative

review we aimed to provide such an overview. We highlight

that most significant advancements in the field of comput-

er-aided polyp assessment involve systems for optical dif-

ferentiation between neoplastic and non-neoplastic le-

sions, with several studies showing the ability of such sys-

tems to perform at expert levels in real-time clinical set-

tings. With commercial availability of some of these sys-

tems, first steps towards improved endoscopy quality with

use of CADx systems in daily practice might be ahead. How-

ever, development of CADx systems for assessment of

polyp characteristics size and location, as well as prediction

of degree of dysplasia and invasion depth, are still in more

preliminary stages while evaluation of these systems in

real-time clinical settings is still warranted. Moreover, com-

puter-aided diagnosis of polyp morphology is a field yet to

be explored.

Additional material is available at
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Despite reported benefits, colonoscopy outcomes may dif-
fer depending on quality of the endoscopist performing the
procedure. Among others, this relates to differences in ability
of endoscopists to accurately assess polyp characteristics such
as location [6], size [7, 8, 9, 10] and morphology [11, 12, 13], as
well as differences in their performance in predicting histologi-
cal polyp features (e. g. histological subtype [14, 15, 16], grade
of dysplasia [17, 18, 19], and, in case of suspected malignancy,
presence of deep submucosal invasion [DSI] [20, 21, 22]). These
polyp characteristics are essential to decide on the indication
for resection and histopathological analysis [23, 24], appropri-
ate resection method [25, 26] and appropriate surveillance in-
terval [27, 28]. Hence, inaccurate endoscopic polyp assessment
could lead to higher patient and economic burden due to unne-
cessary polyp resection and analysis, as well as suboptimal
treatment and/or surveillance regimens.

Over the last decade, artificial intelligence (AI) in biomedical
science has received growing attention. AI can be defined as
the simulation of human intelligence by computer systems
[29]. Specific AI techniques such as machine learning can be
used to make machines (computers) smarter through experi-
ence-based learning [30, 31]. Since computer systems can be
trained with a large amount of high quality and expert-annota-
ted data, they could possibly serve as an objective, real-time,
expert-level second observer modality during colonoscopy pro-
cedures. This might provide opportunities to reduce interob-
server variability and improve general polyp assessment accu-
racy.

While evidence is currently scattered, we aimed to write a
narrative review to provide a broad overview of current devel-
opments within the field of AI and computer science for com-
puter-aided assessment of colorectal polyps. This includes as-
sessment of polyp location, size, morphology and histology, in-
cluding degree of dysplasia (low grade dysplasia [LGD] versus
high grade dysplasia [HGD]) and, in case of suspected malig-
nancy, invasion depth. Since computer-aided polyp detection
concerns an already more thoroughly studied and evaluated to-
pic [32, 33], developments within this field will not be addres-
sed within this review.

Methods
A comprehensive literature search was performed in the MED-
LINE/PubMed, Embase and Cochrane Libraries from the incep-
tion of the databases up to and including the 17th of July 2022.
Key search terms used were “colorectal,” “polyp,” “artificial in-
telligence,” “size,” “location,” “morphology,” “histology,” “dys-
plasia” and “invasion depth.” Only studies published in English
were screened. Reference lists of retrieved studies were manu-
ally screened to identify other relevant publications.

Results
Computer-aided assessment of polyp location

Accurate determination of polyp location is important to facili-
tate identification of a polyp or polypectomy site during conse-
cutive colonoscopies and/or surgical procedures. In addition,

polyp location can aid in polyp histology prediction [34] and is
important to adopt the ‘leave-in-situ’ optical diagnosis strategy
in daily practice [23, 24].

To determine the location of the endoscope tip during colo-
noscopy procedures, and hence the location of observed
polyps, endoscopists often rely on identification of various
endoscopic anatomical landmarks and differences in colonic
caliber, color tones and vasculature of different colon segments
[35]. Endoscope intubation depth in centimeters could also be
used. However, due variations in colon length, shape and anat-
omy [36, 37, 38], change in colon length and position due to in-
sufflation and endoscope intubation, and curving and bending
of the endoscope due to the colon’s flexibility and elasticity, the
accuracy of these methods seems limited. This is illustrated by
earlier studies describing considerable interobserver variability
[6] and 18% to 34% incorrect endoscopic localization of colo-
rectal lesions when compared to findings during consecutive
surgical procedures [39, 40, 41, 42, 43, 44].

Several deep learning approaches for orientation in the co-
lon based on analysis of endoscopic videos and images have
been proposed (▶Table 1) [45, 46, 47]. Two studies described
deep learning approaches for either recognition of anatomical
landmarks [45] or distinguishing different colon segments
[46] (accuracies 66.6% to 92.0%). Another study described sev-
eral camera localization approaches, among which the localiza-
tion approach based on analysis of camera motion in between
colonoscopy video frames reached highest accuracy (71.8% in
test set) [47].

Proposed systems could possibly aid endoscopists in orien-
tation within the colon. However, current studies still concern
feasibility studies and accuracy is mostly still limited. Besides,
usage of a segment classification that assumes that all colons
and segments are of similar length currently limits feasibility
of the proposed motion-based localization system [47]. In addi-
tion, the issue concerning the lack of a solid reference standard
should be addressed. While mostly only estimation of position
within the colon by the endoscopist is available as reference
standard, some sort of bias concerning training and (clinical)
validation of such systems will likely always be present.

Toward the future, the issue of a lack of a solid reference
standard could possibly be addressed by using magnetic endo-
scopic imaging (MEI) devices. These devices can improve accu-
racy of determination of location within the colon during colo-
noscopy [39, 48, 49, 50]. However, performance with aid of MEI
devices is also not flawless and large-scale clinical trials asses-
sing specific benefits of these devices for improving accuracy
of polyp localization are still scarce. Thus, there is a need for
further optimization and validation of MEI-assisted localization
approaches, which may also improve the feasibility of existing
deep learning approaches based on MEI data and images [47,
51]. Simultaneously, composition of more robust datasets for
algorithm training, preferably only containing images/videos
that are annotated by multiple experts, could aid in creating a
more reliable reference standard. Variability in colon length
could possibly be assessed, and accounted for, by using recent-
ly developed applications for image depth estimation and topo-
graphical reconstruction [52, 53, 54], assessment of endoscope
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camera pose [55] and endoscopic three-dimensional (3D) co-
lon reconstruction [56, 57, 58, 59]. Besides, 3D colon recon-
struction [56, 57, 58, 59] techniques might open doors for de-
velopment of other polyp localization approaches, since these
could potentially visualize detected polyps within reconstruc-
tions of the complete colon.

Computer-aided assessment of polyp size

Polyp size has been shown to be associated with the risk that a
polyp harbors advanced histological features [60], as well as the
risk of metachronous advanced lesions and CRC [27, 28].
Hence, recommendations for appropriate resection method
[25, 26] and surveillance intervals [27, 28] are determined,
among other factors, by polyp size. Besides, polyp size deter-
mines whether a polyp can be included in the 'leave-in-situ'
and 'resect-and-discard' optical diagnosis strategies for diminu-
tive (1 to 5mm) polyps [23, 24].

In daily practice, polyp size is based on visual estimation by
the endoscopist. However, this strategy is prone to interobser-
ver variability [7, 8, 9, 10], resulting in 10% to 35% inappropriate
surveillance recommendations [9, 10]. To reduce interobserver
variability, methods for automated polyp size measurement
using deep learning approaches [61, 62, 63, 64, 65] and com-
puter vision techniques [64, 66] have been proposed (▶Table
2). Reported accuracies within these studies ranged between
79.2% to 88.0% [61, 62, 64]. Two studies benchmarking the per-
formance of computer systems against that of endoscopists
showed that computer systems may reach superior accuracy
[64, 65].

While most studies showed promising results, some issues
should be addressed. Most importantly, similar to polyp loca-
tion, a robust reference standard is not available for polyp size.

This is illustrated by the fact that different reference standards
were used in the different studies, limiting robustness and
comparison of performance of the different systems. Addition-
ally, several studies used binary polyp size classifications [61,
62, 64]. Use of binary approaches hampers reliable comparison
to systems using exact polyp size estimation approaches.

Next steps for the development of more robust computer-
ized polyp size measurement methods should include prospec-
tive evaluation of proposed systems in real-time clinical set-
tings. Simultaneously, the problem concerning the lack of a so-
lid reference standard might possibly be addressed through
usage of recently developed endoscope-integrated or -at-
tached polyp measurement tools [67, 68, 69]. Although it is un-
likely that these tools will facilitate determination of the true
size of polyps without a certain margin of error, as can only be
accomplished by measuring polyps in colon (segment) resec-
tion specimens, they could possibly aid in obtaining highly reli-
able estimates of polyp size within in vivo settings. This relates
to the fact that these tools can be precisely calibrated and vali-
dated using (artificial) polyps of known size in ex vivo settings.
However, in order to gain further insights into feasibility of
these tools, large-scale clinical studies validating accuracy of
these tools are still required.

Computer-aided assessment of polyp morphology

Polyp morphology is an important feature for polyp malignancy
risk-assessment [70] and can aid endoscopists in prediction of
presence of DSI [20, 21, 71, 72]. As such, morphology also aids
in selecting the optimal resection method [25, 26]. Assessment
of polyp morphology is usually performed based on the Paris
classification system [73] or laterally spreading tumor classifi-
cation [74], but accuracy is known to be observer-dependent

▶Table 1 Overview of studies describing deep learning approaches for determination of location within the colon based on analysis of endoscopic vi-
deos and images.

Year Described approach Classification

groups

Datasets* Results

Accuracy (%)

Che et al. [45] 2021 Deep learning model for recognition of
endoscopic anatomical landmarks within
video-derived colonoscopy images

Hepatic flexure
Splenic flexure
SDCJ

Training set: 6,911 images
Test set: 1,729 images

90.7–92.0†

Saito et al. [46] 2021 Deep learning model for distinguishing
endoscopic colorectal images captured
within different segments of the colon

Terminal ileum
Cecum
ACTTC
DCTSC
Rectum
Anus

Training set: 9,995 images
Test set: 5,121 images

66.6

Yao et al. [47] 2021 Deep learning model for estimation of re-
lative location of the endoscope camera
within the colon based on (analysis of)
camera motion in between video frames‡

Cecum
Ascending colon
Transverse colon
Descending colon
Sigmoid
Rectum

Training set: 13 videos
Test set: 3 videos

71.8

SDCJ, sigmoid-descending colon junction; ACTTC, ascending colon to transverse colon; DCTSC, descending colon to sigmoid colon
*Data used for internal validation is reported as part of the training set.
†After post-processing through identification of incorrectly predicted frames (based on their temporal distribution) and reassigning these frames to the correct
class, accuracies increased up to 99.8%.
‡Results for other methods (based on withdrawal time analysis, based on endoscope imaging device) not reported due to inferior results.
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▶Table 2 Overview of studies describing deep learning approaches or computer vision techniques for endoscopic polyp size measurement.

Year Described

approach or

technique

Classifi-

cation

groups

Dataset(s* Size ground

truth

Endoscopist

comparison

group (ex-

perience)

Measure-

ment

method

compari-

son group

Results

CADx

(accu-

racy

%)

Endos-

copists

(accuracy

%)

Chade-
becq et al.
[66]

2015 Detection of
Infocus-Break-
point

Exact size
estima-
tion

Training
set: 15 co-
lonoscopy
videos
Test set: 5
colonosco-
py videos

Visual esti-
mation
endoscopists
(surgical tool
as reference)

N/A N/A N/A† N/A

Itoh et al.
[61]

2018 Deep learning
model

Binary ap-
proach:
≤ 10mm
vs.
≥ 10 mm

Training
set: 34,396
images
Test set:
13,093
images

Unspecified N/A N/A 79.2 N/A

Itoh et al.
[62]

2021 Deep learning
model

Binary ap-
proach:
≤ 10mm
vs.
≥ 10 mm

Training
set: 94,980
images
Test set:
15,569
images

Measure-
ment with
sheath of po-
lypectomy
snare as re-
ference (con-
sensus of 3
experts)

N/A N/A 81.0–
88.0

N/A

Su et al.
[63]

2021 Deep learning
model

Exact size
estima-
tion

Training
set: N/A
Test set:
N/A

Pre-meas-
ured balls
used for
model devel-
opment

N/A N/A N/A‡ N/A

Abdelra-
him et al.
[64]

2022 Photogram-
metric ima-
ging (structure
from motion)
technique

Binary ap-
proach:
≤ 5mm
vs.
≥ 5 mm

Training
set: not re-
ported
Test set:
22 videos

Phantom
polyps of
known size

10 endos-
copists
(varying de-
gree of ex-
perience)

Visual esti-
mation

85.2 59.9§

Deep learning
model

Binary ap-
proach:
≤ 5mm
vs.
≥ 5 mm

Training
set: 219 vi-
deos
Test set:
10 videos

Visual size
estimation
endoscopists
(mean of 3
experts)

N/A N/A 80.0 N/A

Kwak et
al. [65]

2022 Deep learning
model

Exact size
estima-
tion

Training
set: N/A¶

Test set:
90 images

Measure-
ment with
ruler after
resection

4 experts
(> 10,000 co-
lonoscopies),
4 trainees
(< 200 colo-
noscopies)

Visual esti-
mation,
opened
snare
measure-
ment

N/A†† N/A‡‡,§§

CADx, computer-aided diagnosis; N/A, not available.
* Data used for internal validation reported as part of the training set.
† Instead of accuracy, mean error from ground truth reported: 4.5% to 6.4% (≈0.2 to 0.3mm).
‡ Study described the process of model development for polyp size estimation. No specific results in terms of accuracy, sensitivity, specificity, negative predictive
value, and positive predictive value reported.
§ Significant differences compared to CADx performance (P < 0.05).
¶ Model was built based on four datasets that are widely used for retinal vascular segmentation research. No specific polyp images were used for training.
†† Instead of accuracy concordance correlation coefficient (CCC) reported: 0.961.
‡‡ Instead of accuracy concordance correlation coefficient (CCC) reported: for visual size estimation CCC ranged between 0.650 and 0.758 (experts) and 0.465 and
0.703 (trainees). For open biopsy forceps size estimation CCC ranged between 0.789 and 0.815 (experts) and 0.657 and 0.762 (trainees).
§§ For visual size estimation significant difference reported for all endoscopists. For open biopsy forceps measurement significant differences reported for all but one
expert endoscopist.
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[11, 12, 13]. Despite these facts, computer-aided diagnosis of
polyp morphology is a field yet to be explored: to the best of
our knowledge, only one study describing assessment of polyp
morphology by a computer system, as part of an algorithm for
automated textual polyp image description, is available [75].

Computer-aided prediction of polyp
histology
Differentiation of diminutive neoplastic from
non-neoplastic (or adenomatous from non-
adenomatous) polyps

Colorectal polyps can generally be subdivided into neoplastic
and non-neoplastic. Neoplastic lesions concerns both lesions
yielding malignant potential and malignant lesions, while non-
neoplastic lesions do not yield malignant potential. Hence, re-
moval and analysis of non-neoplastic lesions is often unneces-
sary [23, 24]. Real-time optical differentiation of neoplastic
and non-neoplastic polyps during colonoscopy procedures
could help to reduce the significant patient and economic bur-
den caused by unnecessary resection and analysis of non-neo-
plastic lesions [76]. For this reason, the 'leave-in-situ' and 're-
sect-and-discard' optical diagnosis strategies have been pro-
posed [23, 24]. However, while proposed optical diagnosis per-
formance thresholds are frequently not met in community
practice, feasibility of these strategies is still limited [14, 15,
16].

A wide variety of studies describing computer systems train-
ed to differentiate neoplastic and non-neoplastic lesions based
on polyp phenotype has been published. For this review, we will
highlight available prospective clinical trials evaluating the per-
formance of such systems in real-time clinical settings and
using either white light, (magnified) narrow band imaging
(NBI) or blue light imaging (BLI) imaging modalities (▶Table 3)
[77, 78, 79, 80, 81, 82, 83, 84]. In these studies, overall accura-
cies of computer-aided diagnosis (CADx) systems ranged be-
tween 78.8% and 93.2% [77, 78, 80, 81, 82, 83]. Reported ac-
curacies for diminutive polyps located within the rectosigmoid
ranged between 75.2% and 94.4% [78, 81, 82, 84]. Within five
studies, CADx system performance was benchmarked to per-
formance by endoscopists [80, 81, 82, 83, 84]. Two studies re-
ported significant differences, both in favor of the endoscopists
and the CADx system [80, 82]. Four studies reported perform-
ance of endoscopists with real-time assistance of a CADx sys-
tem [79, 81, 82, 83, 84]. While no significant benefits were re-
ported for computer-aided colonoscopy when compared to
endoscopists alone, one of these studies did show that non-ex-
perts can eventually meet expert accuracy levels when per-
forming real-time computer-aided polyp assessment on a regu-
lar basis [84].

To facilitate implementation of optical diagnosis strategies
in daily practice, the Preservation and Incorporation of Valuable
Endoscopic Innovations (PIVI) initiative [23] and Simple Optical
Diagnosis Accuracy (SODA) [24] competence standards have
been described. In ▶Table4, results of described clinical trials
are evaluated along the lines of these standards. While most
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CADx systems were able to meet several of the performance
thresholds, none of them met all thresholds. This does however
also relate to the fact that only two studies reported all required
parameters [82, 84]. Besides, an important issue to address is
that, according to PIVI and SODA standards, only high-confi-
dence (HC) diagnoses should be used to calculate performance
parameters [23, 24]. Nonetheless, within most studies differen-
tiation between high- and low-confidence CADx system diag-
noses was either not described [77, 78, 81, 84], or results with
and without inclusion of low-confidence diagnoses were not
separately reported [79, 80, 83]. Moreover, a standard HC diag-
nosis threshold cut-off for CADx systems is lacking (i. e. thresh-
old concerning the minimum degree of certainty that an algo-
rithm requires to consider an output a HC diagnosis). This re-
sults in CADx systems adopting different HC diagnosis thresh-
old cut-offs [79, 80, 82], making reliable comparison and evalu-
ation impossible.

From clinical perspective, the fact that different studies
managed sessile serrated lesions (SSLs) in different ways should
also be addressed. While SSLs are estimated to make up 15–
30% of CRC cases [85] and especially optical differentiation be-
tween SSLs (neoplastic) and hyperplastic polyps (non-neoplas-
tic) is known to be challenging [86], only two studies used a
CADx system that was specifically trained for recognition of
SSLs [82 83]. Besides, only three studies (partly) included SSLs
within the neoplastic polyp group [79, 82, 83], while others as-
signed SSLs to the non-neoplastic group [80, 81, 84] or exclud-
ed all SSLs [77, 78]. Additional limitations relate to the fact that
the number of included polyps was low in several studies, most
studies were single center and only two studies involved ‘non-
expert’ endoscopists [79, 84].

Despite remaining limitations and need for further optimiza-
tion of system performances to reach PIVI and SODA thresh-
olds, most CADx systems for differentiation of neoplastic and
non-neoplastic lesions showed to be able to meet expert
endoscopist performance in real-time clinical settings. In addi-
tion, a significant optical diagnosis learning curve for ‘non-ex-
pert’ endoscopists was illustrated [84]. In the last place, CADx
showed the potential to increase the proportion of HC diagno-
ses by endoscopists compared to unaided optical diagnosis
[79, 82]. This is crucial to establish a reduction in unnecessary
polypectomies and pathological assessments [23, 24]. Hence,
with the commercial availability of some of the evaluated
CADx systems [87], first steps toward improved polyp assess-
ment with use of CADx systems might be ahead.

Differentiation between polyps with different de-
grees of dysplasia

Several studies assessing the feasibility of deep learning ap-
proaches for differentiation of polyps with different degrees of
dysplasia (LGD versus HGD) are available (Table S1) [88, 89, 90,
91, 92, 93]. This is relevant as lesions harboring HGD should
ideally be resected en bloc [4, 25] and may warrant shortened
surveillance intervals [27, 28].

Reported accuracies in six identified studies ranged between
80.2 and 94.6% [88, 89, 90, 91, 92, 93]. In three of these studies,
the CADx systems outperformed endoscopists with different

levels of experience [88, 91, 93]. However, none of the pro-
posed systems was evaluated in a real-time clinical setting and
most studies also included lesions other than lesions with LGD
or HGD.

Because the prevalence of HGD in diminutive polyps is low
[94, 95, 96], the additional value of these systems for optical di-
agnosis strategies is uncertain. Nonetheless, they may be useful
for development of algorithms for purposes such as identifica-
tion of areas with advanced dysplasia in larger lesions. More-
over, while most algorithms are also trained for recognition of
adenocarcinoma, these algorithms might be useful to address
clinical challenges such as endoscopic recognition of T1 CRCs
[97, 98].

Differentiation between superficial and deep inva-
sive lesions

In case of a suspected CRC, the choice and feasibility of en bloc
resection methods depends on the depth of invasion [25, 26].
Nonetheless, imaging modalities to accurately determine le-
sion invasion depth are lacking. Hence, differentiation of le-
sions with and without DSI is mostly done based on endoscopic
identification of specific morphological polyp features [20, 21,
71, 72] and surface characteristics [99, 100] that are known to
be associated with DSI. However, this endoscopic differentia-
tion is known to be challenging [20, 21, 22].

Deep learning approaches for differentiation of lesions with
and without DSI have been proposed in several studies (▶Table
5) [101, 102, 103, 104, 105, 106, 107, 108]. Identified studies
reported accuracies ranging between 81.2% and 94.1% [101,
102, 103, 104, 105, 106, 107, 108]. Some of these studies
benchmarked CADx system performance to performance of
endoscopists with variable degrees of experience [102, 104,
105, 106, 107, 108]. In a few studies, the CADx system outper-
formed one or more of the novices and trainees [104, 105, 106,
108]. In addition, one study illustrated that diagnostic accuracy
of endoscopists improved with assistance of a CADx system
[108]. However, in none of the studies the CADx system was
able to significantly outperform experienced or expert endos-
copists.

Although these results seem promising, they should be care-
fully interpreted. Firstly, none of the systems was validated in a
real-time clinical setting. Moreover, CADx systems were trained
and validated using different imaging modalities, with two
studies showing that performance may differ per imaging mod-
ality [104, 106]. Besides, the datasets considerably differed in
both size and composition. Only three studies reported CADx
systems that were tested on datasets consisting of CRCs only
(both with and without DSI) [103, 105, 106] while other studies
also included benign lesions in the non-DSI group [101, 102,
104, 107, 108].

With recent introduction of new endoscopic resection meth-
ods, possibilities for local resection for lesions with DSI seem to
be increasing. As a result, it could be debated whether optical
diagnosis should not be adapted to also differentiate lesions
with different degrees of DSI [109]. This might also have impli-
cations for future development of CADx systems designed for
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assessment of CRC invasion depth. However, clinical validation
of currently available CADx systems is warranted first.

Discussion
Over the past decade, advances in AI and computer science
have led to an exponential increase in studies on computer-ai-
ded diagnosis of colorectal polyps. As outlined within this re-
view, the most substantial developments in the field of com-
puter-aided polyp diagnosis involve CADx systems for differen-
tiation between neoplastic and non-neoplastic lesions. Several
studies have demonstrated potential of such systems to meet
expert performance levels in real-time clinical settings. Devel-
opmental processes of computer systems that are able to pro-
vide real-time feedback to endoscopists on polyp characteris-
tics such as size, location, degree of dysplasia and invasion
depth are still in preliminary phases. Future studies should
mainly focus on prospective clinical validation of these sys-
tems. Besides, feasibility of CADx systems for specific assess-
ment of polyp morphology has yet to be explored.

Adopting computer systems for colorectal polyp assessment
in daily practice might yield several benefits. Primarily, if these
systems are trained with high quality expert-annotated data,
they could possibly serve as an objective, expert-level second
observer that is not prone to human factors such as fatigue, dis-
traction or subjectivity. Especially for less experienced endos-
copists, this could provide opportunities to optimize accuracy
of polyp assessments, thereby possibly improving clinical out-
comes and reducing patient burden and costs. In addition,
availability of computer systems able to assess independent
polyp characteristics could provide possibilities for automated
polyp description for endoscopy reports [75]. When combined
with algorithms for purposes such as recognition of resection
methods [110], this might significantly ease administrative
burdens for endoscopists. In the last place, optimizing accuracy
of endoscopic assessment of different polyp characteristics
could aid in development of more trustworthy clinical deci-
sion-making algorithms or prediction models involving specific
polyp characteristics [111, 112, 113].

On the other hand, clinicians should also be aware of the lim-
itations and potential disadvantages of computer-aided polyp
diagnosis. Especially systems based on machine learning archi-
tectures are highly dependent on the training data used. While
these systems are often trained with human-annotated data,
these systems are not likely to outperform experts on a regular
basis. Therefore, clinicians should be aware that these systems
are not flawless. In addition, system performance is also depen-
dent on what is shown by the endoscopist: the quality of the
images provided to the computer system during endoscopies
might differ between endoscopists, possibly influencing sys-
tem performance and feasibility [82]. Moreover, it can be hypo-
thesized that regular CADx system-assisted colonoscopy might
eventually lead to a certain degree of user-dependency.

There are also several more general issues to be addressed
when considering the future perspectives of CADx systems in
endoscopy practice. In the first place, insights into the cost-ef-
fectiveness of CADx systems are still scarce. Although it is sug-

gested that CADx could potentially lead to a 11% reduction of
average colonoscopy costs [114], figures concerning actual
cost reduction due to use of CADx systems in different coun-
tries and clinical settings are still lacking. Second, there might
be limitations concerning the technical integration of CADx
systems in different endoscopy suites and settings, while most
systems have unique hardware and software requirements and
are not simply compatible with all regularly used endoscopy de-
vices. Third, the sentiment of physicians toward AI and comput-
er-aided diagnosis should be taken in consideration: increased
costs, operator dependency and increased procedural time are
common concerns among physicians [115]. Moreover, basic
technical knowledge on topics such as machine learning is war-
ranted to be able to critically appraise available literature on the
topic of computer-aided diagnosis approaches and appraise the
possible technical biases inherent to available systems. Due to
the novelty of AI and computer-aided diagnosis, most clinicians
will likely lack this knowledge. Therefore, specific education
and training will be needed to increase its feasibility.

Despite the various limitations and uncertainties, it should
be emphasized that computer-aided diagnosis has only been a
topic of interest within the field of gastrointestinal endoscopy
for a little over ten years. Hence, especially in the context of
the rapidly increasing amounts of research on this topic, toward
the future computer-aided diagnosis will likely take a more pro-
minent role in daily endoscopy practice. On one hand this re-
lates to the fact that (technical) innovations in upcoming years
will likely aid in improving accuracy of existing CADx systems,
while there are also still numerous purposes for which possibili-
ties of computer-aided diagnosis is yet to be explored. In exam-
ple, besides computer systems that could aid endoscopists in
assessment of polyp morphology, systems for purposes such
as suggestion of appropriate polyp resection method or assess-
ment of completeness of resection might yield significant clin-
ical potential.

The strength of this review is that, to the best of our knowl-
edge, this is the first review to provide such a broad overview of
available studies on computer-aided diagnosis of all polyp char-
acteristics essential for clinical decision making. However, in
the context of the extensive scope of the aim of this review,
we decided to comply to a narrative rather than a systematic re-
view approach. While this might have resulted in accidental
miss of relevant publications, this can be considered a limita-
tion.

Conclusions
To conclude, with recent breakthroughs in the field of AI and
computer science, a major increase in research on the topic of
computer-aided colorectal polyp assessment is seen. With
commercial availability of CADx systems for differentiation be-
tween neoplastic and non-neoplastic polyps, first steps toward
improved endoscopy quality with use of CADx systems in daily
practice might be ahead. However, optimization of perform-
ance is still required to ensure that these CADx systems meet
all performance thresholds. Besides, toward the future, further
innovation, exploration and clinical validation of computer-ai-
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ded diagnosis approaches for diagnosis of other polyp charac-
teristics is required for realization of complete computer-aided
polyp assessment.

Conflict of Interest

ED received a research grant from Fujifilm, a consulting fee for medi-
cal advice from Olympus, Fujifilm, GI Supply, PAION, Ambu and CPP-
FAP and a speakers‘ fee from Olympus, Roche, GI Supply, Norgine,
Fujifilm and IPSEN. PF received research support from Boston Scienti-
fic and a consulting fee from Olympus and Cook Endoscopy. The re-
maining Authors declare that there is no conflict of interest.

References

[1] Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLO-
BOCAN estimates of incidence and mortality worldwide for 36 can-
cers in 185 countries. CA Cancer J Clin 2021; 71: 209–249
doi:10.3322/caac.21660

[2] Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogen-
esis. Gastroenterology 2020; 158: 291–302 doi:10.1053/j.gas-
tro.2019.08.059

[3] Rex DK, Boland CR, Dominitz JA et al. Colorectal cancer screening:
Recommendations for physicians and patients from the U.S.Multi-
Society Task Force on Colorectal Cancer. Gastrointest Endosc 2017;
86: 18–33

[4] Saftoiu A, Hassan C, Areia M et al. Role of gastrointestinal endoscopy
in the screening of digestive tract cancers in Europe: European So-
ciety of Gastrointestinal Endoscopy (ESGE) Position Statement.
Endoscopy 2020; 52: 293–304 doi:10.1055/a-1104-5245

[5] Zauber AG. The impact of screening on colorectal cancer mortality
and incidence: has it really made a difference? Dig Dis Sci 2015; 60:
681–691 doi:10.1007/s10620-015-3600-5

[6] O'Connor SA, Hewett DG, Watson MO et al. Accuracy of polyp loca-
lization at colonoscopy. Endosc Int Open 2016; 4: E642–E646
doi:10.1055/s-0042-105864

[7] de Vries AH, Bipat S, Dekker E et al. Polyp measurement based on CT
colonography and colonoscopy: variability and systematic differen-
ces. Eur Radiol 2010; 20: 1404–1413 doi:10.1007/s00330-009-
1683-0

[8] Moug SJ, Vernall N, Saldanha J et al. Endoscopists' estimation of size
should not determine surveillance of colonic polyps. Colorectal Dis
2010; 12: 646–650

[9] Eichenseer PJ, Dhanekula R, Jakate S et al. Endoscopic mis-sizing of
polyps changes colorectal cancer surveillance recommendations.
Dis Colon Rectum 2013; 56: 315–321 doi:10.1097/
DCR.0b013e31826dd138

[10] Chaptini L, Chaaya A, Depalma F et al. Variation in polyp size esti-
mation among endoscopists and impact on surveillance intervals.
Gastrointest Endosc 2014; 80: 652–659

[11] van Doorn SC, Hazewinkel Y, East JE et al. Polyp morphology: an in-
terobserver evaluation for the Paris classification among interna-
tional experts. Am J Gastroenterol 2015; 110: 180–187

[12] Kim JH, Nam KS, Kwon HJ et al. Assessment of colon polyp morphol-
ogy: Is education effective? World J Gastroenterol 2017; 23: 6281–
6286 doi:10.3748/wjg.v23.i34.6281

[13] Lee YJ, Kim ES, Park KS et al. Interobserver agreement in the endo-
scopic classification of colorectal laterally spreading tumors: a mul-
ticenter study between experts and trainees. Dig Dis Sci 2014; 59:
2550–2556

[14] Kuiper T, Marsman WA, Jansen JM et al. Accuracy for optical diagno-
sis of small colorectal polyps in nonacademic settings. Clin Gastro-
enterol Hepatol 2012; 10: 1016–1020 ; quiz e1079

[15] Ladabaum U, Fioritto A, Mitani A et al. Real-time optical biopsy of
colon polyps with narrow band imaging in community practice does
not yet meet key thresholds for clinical decisions. Gastroenterology
2013; 144: 81–91

[16] Patel SG, Schoenfeld P, Kim HM et al. Real-time characterization of
diminutive colorectal polyp histology using narrow-band imaging:
implications for the resect and discard strategy. Gastroenterology
2016; 150: 406–418 doi:10.1053/j.gastro.2015.10.042

[17] Ignjatovic A, East JE, Suzuki N et al. Optical diagnosis of small colo-
rectal polyps at routine colonoscopy (Detect InSpect ChAracterise
Resect and Discard; DISCARD trial): a prospective cohort study.
Lancet Oncology 2009; 10: 1171–1178 doi:10.1016/S1470-2045
(09)70329-8

[18] Komeda Y, Kashida H, Sakurai T et al. Magnifying narrow band ima-
ging (nbi) for the diagnosis of localized colorectal lesions using the
Japan NBI Expert Team (JNET) classification. Oncology 2017; 93: 49–
54 doi:10.1159/000481230

[19] Sumimoto K, Tanaka S, Shigita K et al. Diagnostic performance of
Japan NBI Expert Team classification for differentiation among non-
invasive, superficially invasive, and deeply invasive colorectal neo-
plasia. Gastrointest Endosc 2017; 86: 700–709

[20] Saitoh Y, Obara T, Watari J et al. Invasion depth diagnosis of depres-
sed type early colorectal cancers by combined use of videoendo-
scopy and chromoendoscopy. Gastrointest Endosc 1998; 48: 362–
370 doi:10.1016/s0016-5107(98)70004-5

[21] Horie H, Togashi K, Kawamura YJ et al. Colonoscopic stigmata of 1
mm or deeper submucosal invasion in colorectal cancer. Dis Colon
Rectum 2008; 51: 1529–1534 doi:10.1007/s10350-008-9263-y

[22] Backes Y, Schwartz MP, Ter Borg F et al. Multicentre prospective
evaluation of real-time optical diagnosis of T1 colorectal cancer in
large non-pedunculated colorectal polyps using narrow band ima-
ging (the OPTICAL study). Gut 2019; 68: 271–279 doi:10.1136/
gutjnl-2017-314723

[23] Rex DK, Kahi C, O'Brien M et al. The American Society for Gastroin-
testinal Endoscopy PIVI (Preservation and Incorporation of Valuable
Endoscopic Innovations) on real-time endoscopic assessment of the
histology of diminutive colorectal polyps. Gastrointest Endosc 2011;
73: 419–422 doi:10.1016/j.gie.2011.01.023

[24] Houwen B, Hassan C, Coupé VMH et al. Definition of competence
standards for optical diagnosis of diminutive colorectal polyps: Eu-
ropean Society of Gastrointestinal Endoscopy (ESGE) Position State-
ment. Endoscopy 2022; 54: 88–99 doi:10.1055/a-1689-5130

[25] Ferlitsch M, Moss A, Hassan C et al. Colorectal polypectomy and
endoscopic mucosal resection (EMR): European Society of Gastroin-
testinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2017; 49:
270–297 doi:10.1055/s-0043-102569

[26] Kaltenbach T, Anderson JC, Burke CA et al. Endoscopic removal of
colorectal lesions: Recommendations by the US Multi-Society Task
Force on Colorectal Cancer. Am J Gastroenterol 2020; 115: 435–464
doi:10.14309/ajg.0000000000000555

[27] Hassan C, Antonelli G, Dumonceau JM et al. Post-polypectomy colo-
noscopy surveillance: European Society of Gastrointestinal Endos-
copy (ESGE) Guideline – Update 2020. Endoscopy 2020; 52: 687–
700 doi:10.1055/a-1185-3109

[28] Gupta S, Lieberman D, Anderson JC et al. Recommendations for fol-
low-up after colonoscopy and polypectomy: A consensus update by
the US Multi-Society Task Force on Colorectal Cancer. Am J Gastro-
enterol 2020; 115: 415–434 doi:10.14309/ajg.0000000000000544

[29] Chowdhury M, Sadek AW. Advantages and limitations of artificial
intelligence. Artificial Intelligence Applications to Critical Transpor-
tation Issues. Transportation Research Circular E-C168.

E764 van Bokhorst Querijn NE et al. Advances in artificial… Endosc Int Open 2023; 11: E752–E767 | © 2023. The Author(s).

Review



[30] van der Sommen F, de Groof J, Struyvenberg M et al. Machine learn-
ing in GI endoscopy: practical guidance in how to interpret a novel
field. Gut 2020; 69: 2035–2045 doi:10.1136/gutjnl-2019-320466

[31] Fujita H. AI-based computer-aided diagnosis (AI-CAD): the latest re-
view to read first. Radiol Phys Technol 2020; 13: 6–19 doi:10.1007/
s12194-019-00552-4

[32] Hassan C, Spadaccini M, Iannone A et al. Performance of artificial
intelligence in colonoscopy for adenoma and polyp detection: a sys-
tematic review and meta-analysis. Gastrointest Endosc 2021; 93:
77–85 e76 doi:10.1016/j.gie.2020.06.059

[33] Deliwala SS, Hamid K, Barbarawi M et al. Artificial intelligence (AI)
real-time detection vs. routine colonoscopy for colorectal neoplasia:
a meta-analysis and trial sequential analysis. Int J Colorectal Dis
2021; 36: 2291–2303 doi:10.1007/s00384-021-03929-3

[34] Segev L, Kalady MF, Plesec T et al. The location of premalignant
colorectal polyps under age 50: a further rationale for screening
sigmoidoscopy. Int J Colorectal Dis 2020; 35: 529–535

[35] Stauffer CMP. Colonoscopy. Treasure Island (FL): StatPearls Publish-
ing; 2022

[36] Phillips M, Patel A, Meredith P et al. Segmental colonic length and
mobility. Ann R Coll Surg Engl 2015; 97: 439–444 doi:10.1308/
003588415X14181254790527

[37] Saunders BP, Phillips RK, Williams CB. Intraoperative measurement
of colonic anatomy and attachments with relevance to colonoscopy.
Br J Surg 1995; 82: 1491–1493 doi:10.1002/bjs.1800821113

[38] Madiba TE, Haffajee MR. Anatomical variations in the level of origin
of the sigmoid colon from the descending colon and the attachment
of the sigmoid mesocolon. Clin Anat 2010; 23: 179–185
doi:10.1002/ca.20910

[39] Moug SJ, Fountas S, Johnstone MS et al. Analysis of lesion localisation
at colonoscopy: outcomes from a multi-centre U.K. study. Surg En-
dosc 2017; 31: 2959–2967

[40] Cho YB, Lee WY, Yun HR et al. Tumor localization for laparoscopic
colorectal surgery. World J Surg 2007; 31: 1491–1495 doi:10.1007/
s00464-020-07443-5

[41] Lam DT, Kwong KH, Lam CW et al. How useful is colonoscopy in lo-
cating colorectal lesions? Surg Endosc 1998; 12: 839–841
doi:10.1007/s004649900725

[42] Tabibian N, Michaletz PA, Schwartz JT et al. Use of an endoscopically
placed clip can avoid diagnostic errors in colonoscopy. Gastrointest
Endosc 1988; 34: 262–264 doi:10.1016/s0016-5107(88)71326-7

[43] Vignati P, Welch JP, Cohen JL. Endoscopic localization of colon can-
cers. Surg Endosc 1994; 8: 1085–1087 doi:10.1007/BF00705725

[44] Piscatelli N, Hyman N, Osler T. Localizing colorectal cancer by colo-
noscopy. Arch Surg 2005; 140: 932–935 doi:10.1001/arch-
surg.140.10.932

[45] Che K, Ye C, Yao Y et al. Deep learning-based biological anatomical
landmark detection in colonoscopy videos. arXiv preprint arXiv.
210802948. 2021

[46] Saito H, Tanimoto T, Ozawa T et al. Automatic anatomical classifica-
tion of colonoscopic images using deep convolutional neural net-
works. Gastroenterol Rep 2021; 9: 226–233 doi:10.1093/gastro/
goaa078

[47] Yao H, Stidham RW, Gao Z et al. Motion-based camera localization
system in colonoscopy videos. Med Image Anal 2021; 73: 102180
doi:10.1016/j.media.2021.102180

[48] Ellul P, Fogden E, Simpson C et al. Colonic tumour localization using
an endoscope positioning device. Eur J Gastroenterol Hepatol 2011;
23: 488–491 doi:10.1097/MEG.0b013e328346974b

[49] Szura M, Pasternak A, Solecki R et al. Accuracy of preoperative tumor
localization in large bowel using 3D magnetic endoscopic imaging:
randomized clinical trial. Surg Endosc 2017; 31: 2089–2095
doi:10.1007/s00464-016-5203-4

[50] Cheung HY, Chung CC, Kwok SY et al. Improvement in colonoscopy
performance with adjunctive magnetic endoscope imaging: a ran-
domized controlled trial. Endoscopy 2006; 38: 214–217

[51] Houwen B, Hartendorp F, Giotis I et al. Computer-aided classification
of colorectal segments during colonoscopy: a deep learning ap-
proach based on images of a magnetic endoscopic positioning de-
vice. Scand J Gastroenterol 2022: doi:10.1080/
00365521.2022.2151320

[52] Mahmood F, Durr NJ. Deep learning and conditional random fields-
based depth estimation and topographical reconstruction from
conventional endoscopy. Med Image Anal 2018; 48: 230–243
doi:10.1016/j.media.2018.06.005

[53] Freedman D, Blau Y, Katzir L et al. Detecting deficient coverage in
colonoscopies. IEEE Trans Med Imaging 2020; 39: 3451–3462
doi:10.1109/TMI.2020.2994221

[54] Hwang SJ, Park SJ, Kim GM et al. Unsupervised monocular depth es-
timation for colonoscope system using feedback network. Sensors
2021; 21: 2691 doi:10.3390/s21082691

[55] Armin MA, Barnes N, Alvarez J et al. Learning camera pose from op-
tical colonoscopy frames through deep convolutional neural net-
work (CNN). In: Cardoso MJ, Arbel T, Luo X (eds.) Computer Assisted
and Robotic Endoscopy and Clinical Image-Based Procedures. Cham:
Springer International Publishing; 2017: 50–59

[56] Zhang S, Zhao L, Huang S et al. A template-based 3D reconstruction
of colon structures and textures from stereo colonoscopic images.
IEEE Transactions Med Robotics Bionics 2021; 3: 85–95

[57] Walluscheck S, Wittenberg T, Bruns V et al. Partial 3D-reconstruc-
tion of the colon from monoscopic colonoscopy videos using shape-
from-motion and deep learning. Current Directions in Biomedical
Engineering 2021; 7: 335–338

[58] Hong D, Tavanapong W, Wong J et al. 3D Reconstruction of virtual
colon structures from colonoscopy images. Comput Med Imaging
Graph 2014; 38: 22–33

[59] Ma R, Wang R, Pizer S et al. Real-time 3D reconstruction of colono-
scopic surfaces for determining missing regions. In: Shen D, Liu T,
Peters TM (eds.) Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019. Cham: Springer International Publish-
ing; 2019: 573–582

[60] Hassan C, Pickhardt PJ, Kim DH et al. Systematic review: distribution
of advanced neoplasia according to polyp size at screening colonos-
copy. Aliment Pharmacol Ther 2010; 31: 210–217 doi:10.1111/
j.1365-2036.2009.04160.x

[61] Itoh H, Roth HR, Lu L et al. Towards automated colonoscopy diag-
nosis: binary polyp size estimation via unsupervised depth learning.
In: Frangi AF, Schnabel JA, Davatzikos C (eds.) Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2018. Cham:
Springer International Publishing; 2018: 611–619

[62] Itoh H, Oda M, Jiang K et al. Binary polyp-size classification based on
deep-learned spatial information. Int J Comput Assist Radiol Surg
2021; 16: 1817–1828 doi:10.1007/s11548-021-02477-z

[63] Su R, Liu J, Wu B et al. Accurate measurement of colorectal polyps
using computer-aided analysis. Eur J Gastroenterol Hepatol 2021;
33: 701–708 doi:10.1097/MEG.0000000000002162

[64] Abdelrahim M, Saiga H, Maeda N et al. Automated sizing of colorec-
tal polyps using computer vision. Gut 2022; 71: 7–9 doi:10.1136/
gutjnl-2021-324510

[65] Kwak MS, Cha JM, Jeon JW et al. Artificial intelligence-based meas-
urement outperforms current methods for colorectal polyp size
measurement. Dig Endosc 2022; 34: 1188–1195 doi:10.1111/
den.14318

[66] Chadebecq F, Tilmant C, Bartoli A. How big is this neoplasia? live
colonoscopic size measurement using the Infocus-Breakpoint Med
Image Anal 2015; 19: 58–74 doi:10.1016/j.media.2014.09.002

van Bokhorst Querijn NE et al. Advances in artificial… Endosc Int Open 2023; 11: E752–E767 | © 2023. The Author(s). E765



[67] Yoshioka M, Sakaguchi Y, Utsunomiya D et al. Virtual scale function
of gastrointestinal endoscopy for accurate polyp size estimation in
real-time: a preliminary study. J Biomed Opt 2021; 26: 096002
doi:10.1117/1.JBO.26.9.096002

[68] Visentini-Scarzanella M, Kawasaki H, Furukawa R et al. A structured
light laser probe for gastrointestinal polyp size measurement: a pre-
liminary comparative study. Endosc Int Open 2018; 6: E602–E609
doi:10.1055/a-0577-2798

[69] Shimoda R, Akutagawa T, Tomonaga M et al. Estimating colorectal
polyp size with a virtual scale endoscope and visual estimation dur-
ing colonoscopy: Prospective, preliminary comparison of accuracy.
Dig Endosc 2022; 34: 1471–1477

[70] Williams JG, Pullan RD, Hill J et al. Management of the malignant
colorectal polyp: ACPGBI position statement. Colorectal Dis 2013;
15: 1–38 doi:10.1111/codi.12262

[71] Matsuda T, Saito Y, Nakajima T et al. Macroscopic estimation of
submucosal invasion in the colon. Techniq Gastrointest Endosc
2011; 13: 24–32

[72] Ikehara H, Saito Y, Matsuda T et al. Diagnosis of depth of invasion for
early colorectal cancer using magnifying colonoscopy. J Gastroen-
terol Hepatol 2010; 25: 905–912 doi:10.1111/j.1440-
1746.2010.06275.x

[73] Update on the Paris classification of superficial neoplastic lesions in
the digestive tract. Endoscopy 2005; 37: 570–578 doi:10.1055/s-
2005-861352

[74] Kudo S, Lambert R, Allen JI et al. Nonpolypoid neoplastic lesions of
the colorectal mucosa. Gastrointest Endosc 2008; 68: S3–S47
doi:10.1016/j.gie.2008.07.052

[75] Fonolla R, van der Zander QEW, Schreuder RM et al. Automatic im-
age and text-based description for colorectal polyps using BASIC
classification. Artif Intell Med 2021; 121: 102178 doi:10.1016/j.
artmed.2021.102178

[76] Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would
improve cost-effectiveness of colorectal cancer screening. Clin Gas-
troenterol Hepatol 2010; 8: 865–869 doi:10.1016/j.
cgh.2010.05.018

[77] Kominami Y, Yoshida S, Tanaka S et al. Computer-aided diagnosis of
colorectal polyp histology by using a real-time image recognition
system and narrow-band imaging magnifying colonoscopy. Gastro-
intest Endosc 2016; 83: 643–649 doi:10.1016/j.gie.2015.08.004

[78] Mori Y, Kudo SE, Misawa M et al. Real-time use of artificial intelli-
gence in identification of diminutive polyps during colonoscopy: a
prospective study. Ann Intern Med 2018; 169: 357–366

[79] Barua I, Wieszczy P, Kudo S-E et al. Real-time artificial intelligence–
based optical diagnosis of neoplastic polyps during colonoscopy.
NEJM Evidence 2022; 1: doi:10.1056/EVIDoa2200003

[80] Garcia-Rodriguez A, Tudela Y, Cordova H et al. In vivo computer-ai-
ded diagnosis of colorectal polyps using white light endoscopy. En-
dosc Int Open 2022; 10: E1201–E1207 doi:10.1055/a-1881-3178

[81] Hassan C, Balsamo G, Lorenzetti R et al. Artificial intelligence allows
leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol 2022;
20: 2505–2513.e4

[82] Houwen B, Hazewinkel Y, Giotis I et al. Computer-aided diagnosis for
optical diagnosis of diminutive colorectal polyps including sessile
serrated lesions: a real-time comparison with screening endos-
copists. Endoscopy 2023: doi:10.1055/a-2009-3990

[83] Minegishi Y, Kudo SE, Miyata Y et al. Comprehensive diagnostic per-
formance of real-time characterization of colorectal lesions using an
artificial intelligence-assisted system: a prospective study. Gastro-
enterology 2022; 163: 323–325 e323 doi:10.1053/j.gas-
tro.2022.03.053

[84] Rondonotti E, Hassan C, Tamanini G et al. Artificial intelligence-as-
sisted optical diagnosis for the resect-and-discard strategy in clinical

practice: the Artificial intelligence BLI Characterization (ABC) study.
Endoscopy 2022: doi:10.1055/a-1852-0330

[85] Leggett B, Whitehall V. Role of the serrated pathway in colorectal
cancer pathogenesis. Gastroenterology 2010; 138: 2088–2100
doi:10.1053/j.gastro.2009.12.066

[86] IJspeert JE, Bastiaansen BA, van Leerdam ME et al. Development and
validation of the WASP classification system for optical diagnosis of
adenomas, hyperplastic polyps and sessile serrated adenomas/
polyps. Gut 2016; 65: 963–970 doi:10.1136/gutjnl-2014-308411

[87] Kamitani Y, Nonaka K, Isomoto H. Current status and future per-
spectives of artificial intelligence in colonoscopy. J Clin Med 2022;
11: 2923 doi:10.3390/jcm11102923

[88] Choi K, Choi SJ, Kim ES. Computer-aided diagonosis for colorectal
cancer using deep learning with visual explanations. In: 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC). 2020: 1156–1159

[89] Yang YJ, Cho BJ, Lee MJ et al. Automated classification of colorectal
neoplasms in white-light colonoscopy images via deep learning. J
Clin Med 2020; 9: 1593 doi:10.3390/jcm9051593

[90] Zorron Cheng Tao Pu L, Maicas G, Tian Y et al. Computer-aided di-
agnosis for characterization of colorectal lesions: comprehensive
software that includes differentiation of serrated lesions. Gastroin-
test Endosc 2020; 92: 891–899

[91] Choi SJ, Kim ES, Choi K. Prediction of the histology of colorectal
neoplasm in white light colonoscopic images using deep learning
algorithms. Sci Rep 2021; 11: 5311 doi:10.1038/s41598-021-
84299-2

[92] Gong EJ, Bang CS, Lee JJ et al. No-code platform-based deep-learn-
ing models for prediction of colorectal polyp histology from white-
light endoscopy images: development and performance verifica-
tion. J Pers Med 2022; 12: 963 doi:10.3390/jpm12060963

[93] Meng S, Zheng Y, Wang W et al. A computer-aided diagnosis system
using white-light endoscopy for the prediction of conventional ade-
noma with high grade dysplasia. Dig Liver Dis 2022; 54: 1202–1208

[94] Gupta N, Bansal A, Rao D et al. Prevalence of advanced histological
features in diminutive and small colon polyps. Gastrointest Endosc
2012; 75: 1022–1030 doi:10.1016/j.gie.2012.01.020

[95] Ponugoti PL, Cummings OW, Rex DK. Risk of cancer in small and di-
minutive colorectal polyps. Dig Liver Dis 2017; 49: 34–37
doi:10.1016/j.dld.2016.06.025

[96] Vleugels JLA, Hassan C, Senore C et al. Diminutive polyps with ad-
vanced histologic features do not increase risk for metachronous
advanced colon neoplasia. Gastroenterology 2019; 156: 623–634.
e623

[97] Vleugels JLA, Koens L, Dijkgraaf MGW et al. Suboptimal endoscopic
cancer recognition in colorectal lesions in a national bowel screen-
ing programme. Gut 2020; 69: 977–980 doi:10.1136/gutjnl-2018-
316882

[98] Meulen LWT, van de Wetering AJP, Debeuf MPH et al. Optical diag-
nosis of T1 CRCs and treatment consequences in the Dutch CRC
screening programme. Gut 2020; 69: 2049–2051 doi:10.1136/
gutjnl-2019-320403

[99] Hayashi N, Tanaka S, Hewett DG et al. Endoscopic prediction of deep
submucosal invasive carcinoma: validation of the narrow-band ima-
ging international colorectal endoscopic (NICE) classification. Gas-
trointest Endosc 2013; 78: 625–632 doi:10.1016/j.gie.2013.04.185

[100] Hosotani K, Imai K, Hotta K et al. Diagnostic performance for T1
cancer in colorectal lesions ≥10mm by optical characterization
using magnifying narrow-band imaging combined with magnifying
chromoendoscopy; implications for optimized stratification by Ja-
pan Narrow-band Imaging Expert Team classification. Dig Endosc
2021; 33: 425–432

E766 van Bokhorst Querijn NE et al. Advances in artificial… Endosc Int Open 2023; 11: E752–E767 | © 2023. The Author(s).

Review



[101] Takeda K, Kudo SE, Mori Y et al. Accuracy of diagnosing invasive
colorectal cancer using computer-aided endocytoscopy. Endoscopy
2017; 49: 798–802 doi:10.1055/s-0043-105486

[102] Tamai N, Saito Y, Sakamoto T et al. Effectiveness of computer-aided
diagnosis of colorectal lesions using novel software for magnifying
narrow-band imaging: a pilot study. Endosc Int Open 2017; 5: E690–
E694 doi:10.1055/s-0043-105490

[103] Ito N, Kawahira H, Nakashima H et al. Endoscopic diagnostic support
system for cT1b colorectal cancer using deep learning. Oncology
2019; 96: 44–50 doi:10.1159/000491636

[104] Lui TKL, Wong KKY, Mak LLY et al. Endoscopic prediction of deeply
submucosal invasive carcinoma with use of artificial intelligence.
Endosc Int Open 2019; 7: E514–E520

[105] Nakajima Y, Zhu X, Nemoto D et al. Diagnostic performance of arti-
ficial intelligence to identify deeply invasive colorectal cancer on
non-magnified plain endoscopic images. Endosc Int Open 2020; 8:
E1341–E1348 doi:10.1055/a-1220-6596

[106] Lu Z, Xu Y, Yao L et al. Real-time automated diagnosis of colorectal
cancer invasion depth using a deep learning model with multimodal
data (with video). Gastrointest Endosc 2022; 95: 1186–1194.e3

[107] Luo X, Wang J, Han Z et al. Artificial intelligence-enhanced white-
light colonoscopy with attention guidance predicts colorectal can-
cer invasion depth. Gastrointest Endosc 2021; 94: 627–638 e621

[108] Tokunaga M, Matsumura T, Nankinzan R et al. Computer-aided di-
agnosis system using only white-light endoscopy for the prediction
of invasion depth in colorectal cancer. Gastrointest Endosc 2021; 93:
647–653 doi:10.1016/j.gie.2020.07.053

[109] Moons LMG, Bastiaansen BAJ, Richir MC et al. Endoscopic intermus-
cular dissection for deep submucosal invasive cancer in the rectum:
a new endoscopic approach. Endoscopy 2022; 54: 993–998
doi:10.1055/a-1748-8573

[110] Brand M, Troya J, Krenzer A et al. Development and evaluation of a
deep learning model to improve the usability of polyp detection
systems during interventions. United European Gastroenterol J
2022; 10: 477–484

[111] Kudo SE, Ichimasa K, Villard B et al. Artificial intelligence system to
determine risk of t1 colorectal cancer metastasis to lymph node.
Gastroenterology 2021; 160: 1075–1084 e1072 doi:10.1053/j.gas-
tro.2020.09.027

[112] Ichimasa K, Kudo SE, Mori Y et al. Artificial intelligence may help in
predicting the need for additional surgery after endoscopic resec-
tion of T1 colorectal cancer. Endoscopy 2018; 50: 230–240
doi:10.1055/s-0043-122385

[113] Takamaru H, Stammers M, Yanagisawa F et al. Conditional inference
tree models to perceive depth of invasion in T1 colorectal cancer.
Surg Endosc 2022; 36: 9234–9243 doi:10.1007/s00464-022-09414-
4

[114] Mori Y, Kudo SE, East JE et al. Cost savings in colonoscopy with arti-
ficial intelligence-aided polyp diagnosis: an add-on analysis of a
clinical trial (with video). Gastrointest Endosc 2020; 92: 905–911
e901

[115] Wadhwa V, Alagappan M, Gonzalez A et al. Physician sentiment to-
ward artificial intelligence (AI) in colonoscopic practice: a survey of
US gastroenterologists. Endosc Int Open 2020; 8: E1379–E1384
doi:10.1055/a-1223-1926

van Bokhorst Querijn NE et al. Advances in artificial… Endosc Int Open 2023; 11: E752–E767 | © 2023. The Author(s). E767


