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ABSTRACT

Colonoscopy is considered the gold standard for detection
of colorectal cancer and its precursor lesions. However, co-
lonoscopy outcomes may differ depending on the endos-
copist performing the procedure. Among others, this re-
lates to differences in ability of endoscopists to accurately
assess polyp characteristics that are essential for clinical de-
cision making. These characteristics concern polyp loca-
tion, size and morphology, as well as several histological
polyp features that can be predicted based on polyp pheno-
type. Polyp assessment with aid of computer-aided diagno-
sis (CADx) systems might provide opportunities to optimize
general polyp assessment accuracy. However, a broad over-
view of available studies concerning performance of CADx
systems for diagnosis of different polyp characteristics and
histological features is lacking. Hence, within this narrative
review we aimed to provide such an overview. We highlight
that most significant advancements in the field of comput-
er-aided polyp assessment involve systems for optical dif-
ferentiation between neoplastic and non-neoplastic le-
sions, with several studies showing the ability of such sys-
tems to perform at expert levels in real-time clinical set-
tings. With commercial availability of some of these sys-
tems, first steps towards improved endoscopy quality with
use of CADx systems in daily practice might be ahead. How-
ever, development of CADx systems for assessment of
polyp characteristics size and location, as well as prediction
of degree of dysplasia and invasion depth, are still in more
preliminary stages while evaluation of these systems in
real-time clinical settings is still warranted. Moreover, com-
puter-aided diagnosis of polyp morphology is a field yet to
be explored.

Introduction

sidered the gold standard for detection and diagnosis of CRC
and its precursor lesions [3,4]. Moreover, colonoscopy provides
opportunities for endoscopic resection of precancerous polyps,
which is known to be effective to prevent CRC [5].

Colorectal cancer (CRC) is the third most commonly diagnosed
malignancy and the second leading cause of cancer related-
death in the world [1]. CRC develops from precancerous polyps
through several (epi)genetic pathways [2]. Colonoscopy is con-
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Despite reported benefits, colonoscopy outcomes may dif-
fer depending on quality of the endoscopist performing the
procedure. Among others, this relates to differences in ability
of endoscopists to accurately assess polyp characteristics such
as location [6], size [7,8,9,10] and morphology [11,12,13], as
well as differences in their performance in predicting histologi-
cal polyp features (e.g. histological subtype [14,15,16], grade
of dysplasia [17,18,19], and, in case of suspected malignancy,
presence of deep submucosal invasion [DSI][20,21,22]). These
polyp characteristics are essential to decide on the indication
for resection and histopathological analysis [23,24], appropri-
ate resection method [25,26] and appropriate surveillance in-
terval [27,28]. Hence, inaccurate endoscopic polyp assessment
could lead to higher patient and economic burden due to unne-
cessary polyp resection and analysis, as well as suboptimal
treatment and/or surveillance regimens.

Over the last decade, artificial intelligence (Al) in biomedical
science has received growing attention. Al can be defined as
the simulation of human intelligence by computer systems
[29]. Specific Al techniques such as machine learning can be
used to make machines (computers) smarter through experi-
ence-based learning [30,31]. Since computer systems can be
trained with a large amount of high quality and expert-annota-
ted data, they could possibly serve as an objective, real-time,
expert-level second observer modality during colonoscopy pro-
cedures. This might provide opportunities to reduce interob-
server variability and improve general polyp assessment accu-
racy.

While evidence is currently scattered, we aimed to write a
narrative review to provide a broad overview of current devel-
opments within the field of Al and computer science for com-
puter-aided assessment of colorectal polyps. This includes as-
sessment of polyp location, size, morphology and histology, in-
cluding degree of dysplasia (low grade dysplasia [LGD] versus
high grade dysplasia [HGD]) and, in case of suspected malig-
nancy, invasion depth. Since computer-aided polyp detection
concerns an already more thoroughly studied and evaluated to-
pic [32,33], developments within this field will not be addres-
sed within this review.

Methods

A comprehensive literature search was performed in the MED-
LINE/PubMed, Embase and Cochrane Libraries from the incep-
tion of the databases up to and including the 17t of July 2022.
Key search terms used were “colorectal,” “polyp,” “artificial in-
telligence,” “size,” “location,” “morphology,” “histology,” “dys-
plasia” and “invasion depth.” Only studies published in English
were screened. Reference lists of retrieved studies were manu-
ally screened to identify other relevant publications.

» o«

» o« » o«

Results
Computer-aided assessment of polyp location

Accurate determination of polyp location is important to facili-
tate identification of a polyp or polypectomy site during conse-
cutive colonoscopies and/or surgical procedures. In addition,
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polyp location can aid in polyp histology prediction [34] and is
important to adopt the ‘leave-in-situ’ optical diagnosis strategy
in daily practice [23,24].

To determine the location of the endoscope tip during colo-
noscopy procedures, and hence the location of observed
polyps, endoscopists often rely on identification of various
endoscopic anatomical landmarks and differences in colonic
caliber, color tones and vasculature of different colon segments
[35]. Endoscope intubation depth in centimeters could also be
used. However, due variations in colon length, shape and anat-
omy [36,37,38], change in colon length and position due to in-
sufflation and endoscope intubation, and curving and bending
of the endoscope due to the colon’s flexibility and elasticity, the
accuracy of these methods seems limited. This is illustrated by
earlier studies describing considerable interobserver variability
[6] and 18% to 34% incorrect endoscopic localization of colo-
rectal lesions when compared to findings during consecutive
surgical procedures [39,40,41,42,43,44].

Several deep learning approaches for orientation in the co-
lon based on analysis of endoscopic videos and images have
been proposed (»Table1) [45,46,47]. Two studies described
deep learning approaches for either recognition of anatomical
landmarks [45] or distinguishing different colon segments
[46] (accuracies 66.6% to 92.0%). Another study described sev-
eral camera localization approaches, among which the localiza-
tion approach based on analysis of camera motion in between
colonoscopy video frames reached highest accuracy (71.8% in
test set) [47].

Proposed systems could possibly aid endoscopists in orien-
tation within the colon. However, current studies still concern
feasibility studies and accuracy is mostly still limited. Besides,
usage of a segment classification that assumes that all colons
and segments are of similar length currently limits feasibility
of the proposed motion-based localization system [47]. In addi-
tion, the issue concerning the lack of a solid reference standard
should be addressed. While mostly only estimation of position
within the colon by the endoscopist is available as reference
standard, some sort of bias concerning training and (clinical)
validation of such systems will likely always be present.

Toward the future, the issue of a lack of a solid reference
standard could possibly be addressed by using magnetic endo-
scopic imaging (MEI) devices. These devices can improve accu-
racy of determination of location within the colon during colo-
noscopy [39,48,49,50]. However, performance with aid of MEI
devices is also not flawless and large-scale clinical trials asses-
sing specific benefits of these devices for improving accuracy
of polyp localization are still scarce. Thus, there is a need for
further optimization and validation of MEl-assisted localization
approaches, which may also improve the feasibility of existing
deep learning approaches based on MEI data and images [47,
51]. Simultaneously, composition of more robust datasets for
algorithm training, preferably only containing images/videos
that are annotated by multiple experts, could aid in creating a
more reliable reference standard. Variability in colon length
could possibly be assessed, and accounted for, by using recent-
ly developed applications for image depth estimation and topo-
graphical reconstruction [52,53, 54], assessment of endoscope
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> Table1 Overview of studies describing deep learning approaches for determination of location within the colon based on analysis of endoscopic vi-

deos and images.

Year Described approach

Cheetal. [45] 2021 Deep learning model for recognition of
endoscopic anatomical landmarks within
video-derived colonoscopy images

Saito et al. [46] 2021 Deep learning model for distinguishing
endoscopic colorectal images captured
within different segments of the colon

Yao etal. [47] 2021 Deep learning model for estimation of re-
lative location of the endoscope camera
within the colon based on (analysis of)
camera motion in between video frames}

Classification Datasets™ Results
groups Accuracy (%)
Hepatic flexure Training set: 6,911 images 90.7-92.0%
Splenic flexure Test set: 1,729 images

SDCJ

Terminal ileum Training set: 9,995 images 66.6
Cecum Test set: 5,121 images

ACTTC

DCTSC

Rectum

Anus

Cecum Training set: 13 videos 71.8
Ascending colon Test set: 3 videos

Transverse colon
Descending colon
Sigmoid

Rectum

SD(], sigmoid-descending colon junction; ACTTC, ascending colon to transverse colon; DCTSC, descending colon to sigmoid colon

*Data used for internal validation is reported as part of the training set.

TAfter post-processing through identification of incorrectly predicted frames (based on their temporal distribution) and reassigning these frames to the correct

class, accuracies increased up to 99.8%.

{Results for other methods (based on withdrawal time analysis, based on endoscope imaging device) not reported due to inferior results.

camera pose [55] and endoscopic three-dimensional (3D) co-
lon reconstruction [56,57,58,59]. Besides, 3D colon recon-
struction [56,57,58,59] techniques might open doors for de-
velopment of other polyp localization approaches, since these
could potentially visualize detected polyps within reconstruc-
tions of the complete colon.

Computer-aided assessment of polyp size

Polyp size has been shown to be associated with the risk that a
polyp harbors advanced histological features [60], as well as the
risk of metachronous advanced lesions and CRC [27,28].
Hence, recommendations for appropriate resection method
[25,26] and surveillance intervals [27,28] are determined,
among other factors, by polyp size. Besides, polyp size deter-
mines whether a polyp can be included in the 'leave-in-situ’
and 'resect-and-discard' optical diagnosis strategies for diminu-
tive (1 to 5mm) polyps [23, 24].

In daily practice, polyp size is based on visual estimation by
the endoscopist. However, this strategy is prone to interobser-
ver variability [7, 8,9, 10], resulting in 10% to 35% inappropriate
surveillance recommendations [9, 10]. To reduce interobserver
variability, methods for automated polyp size measurement
using deep learning approaches [61,62,63,64,65] and com-
puter vision techniques [64,66] have been proposed (» Table
2). Reported accuracies within these studies ranged between
79.2% to 88.0% [61,62,64]. Two studies benchmarking the per-
formance of computer systems against that of endoscopists
showed that computer systems may reach superior accuracy
[64,65].

While most studies showed promising results, some issues
should be addressed. Most importantly, similar to polyp loca-
tion, a robust reference standard is not available for polyp size.

This is illustrated by the fact that different reference standards
were used in the different studies, limiting robustness and
comparison of performance of the different systems. Addition-
ally, several studies used binary polyp size classifications [61,
62,64]. Use of binary approaches hampers reliable comparison
to systems using exact polyp size estimation approaches.

Next steps for the development of more robust computer-
ized polyp size measurement methods should include prospec-
tive evaluation of proposed systems in real-time clinical set-
tings. Simultaneously, the problem concerning the lack of a so-
lid reference standard might possibly be addressed through
usage of recently developed endoscope-integrated or -at-
tached polyp measurement tools [67, 68, 69]. Although it is un-
likely that these tools will facilitate determination of the true
size of polyps without a certain margin of error, as can only be
accomplished by measuring polyps in colon (segment) resec-
tion specimens, they could possibly aid in obtaining highly reli-
able estimates of polyp size within in vivo settings. This relates
to the fact that these tools can be precisely calibrated and vali-
dated using (artificial) polyps of known size in ex vivo settings.
However, in order to gain further insights into feasibility of
these tools, large-scale clinical studies validating accuracy of
these tools are still required.

Computer-aided assessment of polyp morphology

Polyp morphology is an important feature for polyp malignancy
risk-assessment [70] and can aid endoscopists in prediction of
presence of DSI [20,21,71,72]. As such, morphology also aids
in selecting the optimal resection method [25, 26]. Assessment
of polyp morphology is usually performed based on the Paris
classification system [73] or laterally spreading tumor classifi-
cation [74], but accuracy is known to be observer-dependent
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» Table2 Overview of studies describing deep learning approaches or computer vision techniques for endoscopic polyp size measurement.

Year
Chade- 2015
becqetal.
[66]

Itohetal. 2018
[67]

Itohetal. 2021
[62]

Suetal. 2021
[63]

Abdelra- 2022
him et al.
[64]

Kwak et 2022
al. [65]

Described
approach or
technique

Detection of
Infocus-Break-
point

Deep learning
model

Deep learning
model

Deep learning
model

Photogram-
metric ima-
ging (structure
from motion)
technique

Deep learning
model

Deep learning
model

Classifi-
cation
groups

Exact size
estima-
tion

Binary ap-
proach:
<10mm
Vs.
>210mm

Binary ap-
proach:
<10mm
Vs.
>10mm

Exact size
estima-
tion

Binary ap-
proach:
<5mm
Vs.
25mm

Binary ap-
proach:
<5mm
vs.
>5mm

Exact size
estima-
tion

CADx, computer-aided diagnosis; N/A, not available.
* Data used for internal validation reported as part of the training set.

TInstead of accuracy, mean error from ground truth reported: 4.5% to 6.4% (=0.2 to 0.3 mm).
1 Study described the process of model development for polyp size estimation. No specific results in terms of accuracy, sensitivity, specificity, negative predictive

value, and positive predictive value reported.

Dataset(s* Size ground
truth
Training Visual esti-
set: 15 co- mation
lonoscopy endoscopists
videos (surgical tool
Test set: 5 as reference)
colonosco-
py videos
Training Unspecified
set: 34,396
images
Test set:
13,093
images
Training Measure-
set: 94,980 ment with
images sheath of po-
Test set: lypectomy
15,569 snare as re-
images ference (con-
sensus of 3
experts)
Training Pre-meas-
set: N/A ured balls
Test set: used for
N/A model devel-
opment
Training Phantom
set: not re- polyps of
ported known size
Test set:
22 videos
Training Visual size
set: 219 vi- estimation
deos endoscopists
Test set: (mean of 3
10 videos experts)
Training Measure-
set: N/AT ment with
Test set: ruler after
90 images resection

§ Significant differences compared to CADx performance (P < 0.05).

' Model was built based on four datasets that are widely used for retinal vascular segmentation research. No specific polyp images were used for training.

Tt Instead of accuracy concordance correlation coefficient (CCC) reported: 0.961.
# |nstead of accuracy concordance correlation coefficient (CCC) reported: for visual size estimation CCC ranged between 0.650 and 0.758 (experts) and 0.465 and

0.703 (trainees). For open biopsy forceps size estimation CCC ranged between 0.789 and 0.815 (experts) and 0.657 and 0.762 (trainees).

Endoscopist
comparison
group (ex-
perience)

N/A

N/A

N/A

N/A

10 endos-
copists
(varying de-
gree of ex-
perience)

N/A

4 experts
(>10,000 co-
lonoscopies),
4 trainees
(<200 colo-
noscopies)

Measure-
ment
method
compari-
son group

N/A

N/A

N/A

Visual esti-
mation

N/A

Visual esti-
mation,
opened
snare
measure-
ment

Results

CADXx
(accu-
racy
%)

N/Af

79.2

81.0-
88.0

N/At

85.2

80.0

NJAlt

Endos-
copists
(accuracy
%)

N/A

59.9%

N/AH-88

8 For visual size estimation significant difference reported for all endoscopists. For open biopsy forceps measurement significant differences reported for all but one

expert endoscopist.
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[11,12,13]. Despite these facts, computer-aided diagnosis of
polyp morphology is a field yet to be explored: to the best of
our knowledge, only one study describing assessment of polyp
morphology by a computer system, as part of an algorithm for
automated textual polyp image description, is available [75].

Computer-aided prediction of polyp
histology

Differentiation of diminutive neoplastic from
non-neoplastic (or adenomatous from non-
adenomatous) polyps

Colorectal polyps can generally be subdivided into neoplastic
and non-neoplastic. Neoplastic lesions concerns both lesions
yielding malignant potential and malignant lesions, while non-
neoplastic lesions do not yield malignant potential. Hence, re-
moval and analysis of non-neoplastic lesions is often unneces-
sary [23,24]. Real-time optical differentiation of neoplastic
and non-neoplastic polyps during colonoscopy procedures
could help to reduce the significant patient and economic bur-
den caused by unnecessary resection and analysis of non-neo-
plastic lesions [76]. For this reason, the 'leave-in-situ' and 're-
sect-and-discard' optical diagnosis strategies have been pro-
posed [23,24]. However, while proposed optical diagnosis per-
formance thresholds are frequently not met in community
practice, feasibility of these strategies is still limited [14,15,
16].

A wide variety of studies describing computer systems train-
ed to differentiate neoplastic and non-neoplastic lesions based
on polyp phenotype has been published. For this review, we will
highlight available prospective clinical trials evaluating the per-
formance of such systems in real-time clinical settings and
using either white light, (magnified) narrow band imaging
(NBI) or blue light imaging (BLI) imaging modalities (» Table 3)
[77,78,79,80,81,82,83,84]. In these studies, overall accura-
cies of computer-aided diagnosis (CADx) systems ranged be-
tween 78.8% and 93.2% [77,78,80,81,82,83]. Reported ac-
curacies for diminutive polyps located within the rectosigmoid
ranged between 75.2% and 94.4% [78,81,82,84]. Within five
studies, CADx system performance was benchmarked to per-
formance by endoscopists [80,81,82,83,84]. Two studies re-
ported significant differences, both in favor of the endoscopists
and the CADx system [80, 82]. Four studies reported perform-
ance of endoscopists with real-time assistance of a CADx sys-
tem [79,81, 82,83, 84]. While no significant benefits were re-
ported for computer-aided colonoscopy when compared to
endoscopists alone, one of these studies did show that non-ex-
perts can eventually meet expert accuracy levels when per-
forming real-time computer-aided polyp assessment on a regu-
lar basis [84].

To facilitate implementation of optical diagnosis strategies
in daily practice, the Preservation and Incorporation of Valuable
Endoscopic Innovations (PIVI) initiative [23] and Simple Optical
Diagnosis Accuracy (SODA) [24] competence standards have
been described. In » Table4, results of described clinical trials
are evaluated along the lines of these standards. While most

CADx, computer-aided diagnosis; SSL, sessile serrated lesion; NBI, narrow band imaging; AD, adenomas; NAD, non-adenomas; RS, rectosigmoid; N/A, not available; HC, high confidence; PPV, positive predictive value; NPV, neg-

ative predictive value; NP, neoplastic polyp; NNP, non-neoplastic polyp; WLE, white light endoscopy; HP, hyperplastic polyp; BCSP, bowel cancer screening program; BLI, blue light imaging.

* Significant difference compared to CADx performance (P < 0.05).
8 Within this study, CADx trained and tested for white light endoscopy. However, endoscopists used virtual chromoendoscopy for optical diagnosis and were not blinded for the CADx diagnosis. While unblinded to CADx diagnosis,

endoscopist performance is reported as CADx-assisted performance.

11 High-confidence diagnosis cut-off threshold: 50%.
T Experts endoscopists followed a dedicated training program, underwent periodic auditing and monitoring and performed optical diagnosis on a regular basis. Non-experts were endoscopists that did not fulfill these criteria.

8Reported results concern 'worst-case scenario' results as reported in study (9 polyps for which CADx system diagnosis was not possible were treated as either false-positive or false-negative).

T CADx performance benchmarked to endoscopists in separate (non-real-time) test set, hence not reported within table.

tt High-confidence diagnosis cut-off threshold: 70%.

tOnly concordance between optical diagnosis by endoscopists and CADx system diagnosis reported (97.5%).
# High-confidence diagnosis cut-off threshold: 80%.

T1f available, performance with inclusion of only high-confidence diagnoses reported.

» Table 3 (Continuation)
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CADx systems were able to meet several of the performance
thresholds, none of them met all thresholds. This does however
also relate to the fact that only two studies reported all required
parameters [82,84]. Besides, an important issue to address is
that, according to PIVI and SODA standards, only high-confi-
dence (HC) diagnoses should be used to calculate performance
parameters [23,24]. Nonetheless, within most studies differen-
tiation between high- and low-confidence CADx system diag-
noses was either not described [77,78, 81, 84], or results with
and without inclusion of low-confidence diagnoses were not
separately reported [79, 80, 83]. Moreover, a standard HC diag-
nosis threshold cut-off for CADx systems is lacking (i. e. thresh-
old concerning the minimum degree of certainty that an algo-
rithm requires to consider an output a HC diagnosis). This re-
sults in CADx systems adopting different HC diagnosis thresh-
old cut-offs [79, 80, 82], making reliable comparison and evalu-
ation impossible.

From clinical perspective, the fact that different studies
managed sessile serrated lesions (SSLs) in different ways should
also be addressed. While SSLs are estimated to make up 15-
30% of CRC cases [85] and especially optical differentiation be-
tween SSLs (neoplastic) and hyperplastic polyps (non-neoplas-
tic) is known to be challenging [86], only two studies used a
CADx system that was specifically trained for recognition of
SSLs [82 83]. Besides, only three studies (partly) included SSLs
within the neoplastic polyp group [79, 82, 83], while others as-
signed SSLs to the non-neoplastic group [80, 81, 84] or exclud-
ed all SSLs [77,78]. Additional limitations relate to the fact that
the number of included polyps was low in several studies, most
studies were single center and only two studies involved ‘non-
expert’ endoscopists [79, 84].

Despite remaining limitations and need for further optimiza-
tion of system performances to reach PIVI and SODA thresh-
olds, most CADx systems for differentiation of neoplastic and
non-neoplastic lesions showed to be able to meet expert
endoscopist performance in real-time clinical settings. In addi-
tion, a significant optical diagnosis learning curve for ‘non-ex-
pert’ endoscopists was illustrated [84]. In the last place, CADx
showed the potential to increase the proportion of HC diagno-
ses by endoscopists compared to unaided optical diagnosis
[79,82]. This is crucial to establish a reduction in unnecessary
polypectomies and pathological assessments [23,24]. Hence,
with the commercial availability of some of the evaluated
CADx systems [87], first steps toward improved polyp assess-
ment with use of CADx systems might be ahead.

Differentiation between polyps with different de-
grees of dysplasia

Several studies assessing the feasibility of deep learning ap-
proaches for differentiation of polyps with different degrees of
dysplasia (LGD versus HGD) are available (TableS1) [88, 89,90,
91,92,93]. This is relevant as lesions harboring HGD should
ideally be resected en bloc [4,25] and may warrant shortened
surveillance intervals [27, 28].

Reported accuracies in six identified studies ranged between
80.2 and 94.6% [88,89,90,91,92,93]. In three of these studies,
the CADx systems outperformed endoscopists with different
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levels of experience [88,91,93]. However, none of the pro-
posed systems was evaluated in a real-time clinical setting and
most studies also included lesions other than lesions with LGD
or HGD.

Because the prevalence of HGD in diminutive polyps is low
[94,95,96], the additional value of these systems for optical di-
agnosis strategies is uncertain. Nonetheless, they may be useful
for development of algorithms for purposes such as identifica-
tion of areas with advanced dysplasia in larger lesions. More-
over, while most algorithms are also trained for recognition of
adenocarcinoma, these algorithms might be useful to address
clinical challenges such as endoscopic recognition of T1 CRCs
[97,98].

Differentiation between superficial and deep inva-
sive lesions

In case of a suspected CRC, the choice and feasibility of en bloc
resection methods depends on the depth of invasion [25,26].
Nonetheless, imaging modalities to accurately determine le-
sion invasion depth are lacking. Hence, differentiation of le-
sions with and without DSI is mostly done based on endoscopic
identification of specific morphological polyp features [20, 21,
71,72] and surface characteristics [99, 100] that are known to
be associated with DSI. However, this endoscopic differentia-
tion is known to be challenging [20,21,22].

Deep learning approaches for differentiation of lesions with
and without DSI have been proposed in several studies (» Table
5) [101,102,103,104,105,106,107,108]. ldentified studies
reported accuracies ranging between 81.2% and 94.1% [101,
102,103,104,105,106,107,108]. Some of these studies
benchmarked CADx system performance to performance of
endoscopists with variable degrees of experience [102, 104,
105,106,107,108]. In a few studies, the CADx system outper-
formed one or more of the novices and trainees [104, 105, 106,
108]. In addition, one study illustrated that diagnostic accuracy
of endoscopists improved with assistance of a CADx system
[108]. However, in none of the studies the CADx system was
able to significantly outperform experienced or expert endos-
copists.

Although these results seem promising, they should be care-
fully interpreted. Firstly, none of the systems was validated in a
real-time clinical setting. Moreover, CADx systems were trained
and validated using different imaging modalities, with two
studies showing that performance may differ perimaging mod-
ality [104,106]. Besides, the datasets considerably differed in
both size and composition. Only three studies reported CADx
systems that were tested on datasets consisting of CRCs only
(both with and without DSI) [103, 105, 106] while other studies
also included benign lesions in the non-DSI group [101,102,
104,107,108].

With recent introduction of new endoscopic resection meth-
ods, possibilities for local resection for lesions with DSI seem to
be increasing. As a result, it could be debated whether optical
diagnosis should not be adapted to also differentiate lesions
with different degrees of DSI [109]. This might also have impli-
cations for future development of CADx systems designed for
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assessment of CRC invasion depth. However, clinical validation
of currently available CADx systems is warranted first.

Discussion

Over the past decade, advances in Al and computer science
have led to an exponential increase in studies on computer-ai-
ded diagnosis of colorectal polyps. As outlined within this re-
view, the most substantial developments in the field of com-
puter-aided polyp diagnosis involve CADx systems for differen-
tiation between neoplastic and non-neoplastic lesions. Several
studies have demonstrated potential of such systems to meet
expert performance levels in real-time clinical settings. Devel-
opmental processes of computer systems that are able to pro-
vide real-time feedback to endoscopists on polyp characteris-
tics such as size, location, degree of dysplasia and invasion
depth are still in preliminary phases. Future studies should
mainly focus on prospective clinical validation of these sys-
tems. Besides, feasibility of CADx systems for specific assess-
ment of polyp morphology has yet to be explored.

Adopting computer systems for colorectal polyp assessment
in daily practice might yield several benefits. Primarily, if these
systems are trained with high quality expert-annotated data,
they could possibly serve as an objective, expert-level second
observer that is not prone to human factors such as fatigue, dis-
traction or subjectivity. Especially for less experienced endos-
copists, this could provide opportunities to optimize accuracy
of polyp assessments, thereby possibly improving clinical out-
comes and reducing patient burden and costs. In addition,
availability of computer systems able to assess independent
polyp characteristics could provide possibilities for automated
polyp description for endoscopy reports [75]. When combined
with algorithms for purposes such as recognition of resection
methods [110], this might significantly ease administrative
burdens for endoscopists. In the last place, optimizing accuracy
of endoscopic assessment of different polyp characteristics
could aid in development of more trustworthy clinical deci-
sion-making algorithms or prediction models involving specific
polyp characteristics [111,112,113].

On the other hand, clinicians should also be aware of the lim-
itations and potential disadvantages of computer-aided polyp
diagnosis. Especially systems based on machine learning archi-
tectures are highly dependent on the training data used. While
these systems are often trained with human-annotated data,
these systems are not likely to outperform experts on a reqular
basis. Therefore, clinicians should be aware that these systems
are not flawless. In addition, system performance is also depen-
dent on what is shown by the endoscopist: the quality of the
images provided to the computer system during endoscopies
might differ between endoscopists, possibly influencing sys-
tem performance and feasibility [82]. Moreover, it can be hypo-
thesized that regular CADx system-assisted colonoscopy might
eventually lead to a certain degree of user-dependency.

There are also several more general issues to be addressed
when considering the future perspectives of CADx systems in
endoscopy practice. In the first place, insights into the cost-ef-
fectiveness of CADx systems are still scarce. Although it is sug-
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gested that CADx could potentially lead to a 11% reduction of
average colonoscopy costs [114], figures concerning actual
cost reduction due to use of CADx systems in different coun-
tries and clinical settings are still lacking. Second, there might
be limitations concerning the technical integration of CADx
systems in different endoscopy suites and settings, while most
systems have unique hardware and software requirements and
are not simply compatible with all regularly used endoscopy de-
vices. Third, the sentiment of physicians toward Al and comput-
er-aided diagnosis should be taken in consideration: increased
costs, operator dependency and increased procedural time are
common concerns among physicians [115]. Moreover, basic
technical knowledge on topics such as machine learning is war-
ranted to be able to critically appraise available literature on the
topic of computer-aided diagnosis approaches and appraise the
possible technical biases inherent to available systems. Due to
the novelty of Al and computer-aided diagnosis, most clinicians
will likely lack this knowledge. Therefore, specific education
and training will be needed to increase its feasibility.

Despite the various limitations and uncertainties, it should
be emphasized that computer-aided diagnosis has only been a
topic of interest within the field of gastrointestinal endoscopy
for a little over ten years. Hence, especially in the context of
the rapidly increasing amounts of research on this topic, toward
the future computer-aided diagnosis will likely take a more pro-
minent role in daily endoscopy practice. On one hand this re-
lates to the fact that (technical) innovations in upcoming years
will likely aid in improving accuracy of existing CADx systems,
while there are also still numerous purposes for which possibili-
ties of computer-aided diagnosis is yet to be explored. In exam-
ple, besides computer systems that could aid endoscopists in
assessment of polyp morphology, systems for purposes such
as suggestion of appropriate polyp resection method or assess-
ment of completeness of resection might yield significant clin-
ical potential.

The strength of this review is that, to the best of our knowl-
edge, this is the first review to provide such a broad overview of
available studies on computer-aided diagnosis of all polyp char-
acteristics essential for clinical decision making. However, in
the context of the extensive scope of the aim of this review,
we decided to comply to a narrative rather than a systematic re-
view approach. While this might have resulted in accidental
miss of relevant publications, this can be considered a limita-
tion.

Conclusions

To conclude, with recent breakthroughs in the field of Al and
computer science, a major increase in research on the topic of
computer-aided colorectal polyp assessment is seen. With
commercial availability of CADx systems for differentiation be-
tween neoplastic and non-neoplastic polyps, first steps toward
improved endoscopy quality with use of CADx systems in daily
practice might be ahead. However, optimization of perform-
ance is still required to ensure that these CADx systems meet
all performance thresholds. Besides, toward the future, further
innovation, exploration and clinical validation of computer-ai-
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diagnosis approaches for diagnosis of other polyp charac-

teristics is required for realization of complete computer-aided
polyp assessment.
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