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Introduction
Traumatic brain injury (TBI) is defined as “an alteration in brain func-
tion or other evidence of brain pathology, caused by an external 
force [1].” It may be caused by accidents and violence, and accounts 
for one-third of all injury-related deaths in the United States. About 
3 % of the population experience chronic disability related to TBI. 
It is associated with a broad spectrum of symptoms that unfold over 
hours to months and, in some cases, indefinitely. Mild TBI (mTBI) 
patients constitute a large majority of all recorded cases of TBI [2–4]. 
Although most mTBI patients recover, a substantial minority 
(7–33 %) develop persistent disabilities (post-concussive syndrome 

or PCS) in the form of somatic (headaches, dizziness), cognitive (at-
tention and memory impairment), and emotional (irritability, de-
pression) problems [5]. The diagnosis of mTBI is difficult and exac-
erbated by the fact that individual patients experience different 
subsets of clinical symptoms. Cumulative effects of multiple con-
cussions demonstrate that latent dysfunction lingers even in pa-
tients whose symptoms have resolved. Reports suggest that 
11–23 % of deployed service members have mTBI [6].

Brain imaging technologies have been used to assess mTBI, and 
because computed tomography (CT) is practical and ubiquitous in 
emergency medicine, CT is commonly the first neuroimaging pro-
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ABStr ACt

Due to the mildness of initial injury, many athletes with recur-
rent mild traumatic brain injury (mTBI) are misdiagnosed with 
other neuropsychiatric illnesses. This study was designed as a 
proof-of-principle feasibility trial for athletic trainers at a sports 
facility to generate electroencephalograms (EEGs) from stu-
dent athletes for discriminating (mTBI) associated EEGs from 
uninjured ones. A total of 47 EEGs were generated, with 30 
athletes recruited at baseline (BL) pre-season, after a concus-
sive injury (IN), and post-season (PS). Outcomes included: 1) 
visual analyses of EEGs by a neurologist; 2) support vector ma-
chine (SVM) classification for inferences about whether par-
ticular groups belonged to the three subgroups of BL, IN, or PS; 
and 3) analyses of EEG synchronies including phase locking 
value (PLV) computed between pairs of distinct electrodes. All 
EEGs were visually interpreted as normal. SVM classification 
showed that BL and IN could be discriminated with 81 % accu-
racy using features of EEG synchronies combined. Frontal inter-
hemispheric phase synchronization measured by PLV was sig-
nificantly lower in the IN group. It is feasible for athletic trainers 
to record high quality EEGs from student athletes. Also, spa-
tially localized metrics of EEG synchrony can discriminate mTBI 
associated EEGs from control EEGs.
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cedure to be used for the mTBI patient. However, CT findings or 
other structural imaging have been poor predictors of long-term 
sequelae, perhaps because mTBI is not associated with bleeding or 
other gross trauma, unlike more severe brain injuries [7, 8]. This is 
partly due to the fact that mTBI injuries are primarily microscopic 
and diffuse and most mTBI patients have normal CT and structural 
magnetic resonance imaging (MRI) scans [9, 10]. Diffusion tensor 
imaging (DTI), another structural assessment, could not discrimi-
nate between normal and mTBI patients even when the patients 
had post-concussive symptoms such as verbal memory deficits 
[11]. Although more recent DTI efforts have had some success in 
distinguishing mTBI and control patients, mTBI appears to impact 
brain function to a greater extent than it impacts brain structure 
[12].

Concussion is common and physicians face serious challenges 
in the management and prognostication of mTBI. In the US, emer-
gency departments (EDs) receive 1.2 million patients with TBI, ac-
counting for 1.2 % of all ED visits, with 38 % of these patients being 
discharged home without specific recommendations for follow-up 
[2, 13, 14]. In a longitudinal study of mTBI patients presenting to 
the ED, 82 % of patients reported at least one subsequent post-con-
cussive symptom and > 40 % had significantly reduced Satisfaction 
with Life scores post-injury, indicating mTBI produces significant 
disability [4].

Sports-related concussion is one of the major causes of TBI and 
increasing media coverage of professional athletes whose careers 
were ended by brain injury and recent relevant changes to the Na-
tional Football League policy reflect only one aspect of the overall 
societal impact of mTBI [15–17].

High school football players had alterations in default mode net-
work (DMN) activation measured by fMRI functional covariance as 
compared to non-contact sports athletes [18]. Significant reduc-
tions in DMN activation of football players were shown at 7 days 
after injury [19]. Significant cerebral glucose metabolism changes 
were found in former National Football League players who had suf-
fered repetitive sub-concussive injury as well as concussions dur-
ing their careers [20]. Many athletes with no single mTBI event may 
accumulate thousands of sub-concussive incidents eventually re-
sulting in neurological impairment [21]. In athletes with sports-re-
lated injuries, EEG abnormalities extracted by analysis persisted 
after the post-concussive symptoms had resolved, suggesting that 
EEG can be useful to detect and manage mTBI [22, 23].

Could EEG be used to manage mTBI in athletes? For EEG to be 
practical in managing sports concussion, it should be easy to record 
high-quality, clinical-grade EEG at sports facilities, and quantitative 
measures from the EEG should be sufficient to accurately distinguish 
between injury and non-injury EEGs. Resting-state EEG requires that 
the subject sit or lie still, making it a promising method ology for de-
termining the presence and severity of mTBI. Resting-state record-
ings are easy for the subjects as well as for the EEG operator to col-
lect, because no motor, cognitive, or other neurological tests are ad-
ministered. In the present study, EEGs were recorded at a university 
sports facility by athletic trainers so we could assess whether it is 
practical and convenient to collect high-quality EEGs from athletes. 
We used commercially available systems, microEEG, a portable, wire-
less battery-operated amplifier device as well as StatNet, a rapid-to-
apply, single-use disposable EEG electrode cap. A resting-state EEG 

was collected from college athletes at baseline (BL) before the sports 
season, after a concussive injury (IN), and post-season (PS). Analysis 
of the recordings by extracting quantitative measures of local and 
inter-area neural activity synchronization and binary injury/non-in-
jury classification demonstrates that the EEGs could be discriminat-
ed with 81 % accuracy. By examining the individual quantitative fea-
tures extracted from the EEG, we find that inter-hemispheric phase 
synchronization is significantly lower in the Injury group.

Materials and Methods

Participants, data collection, and study design
A total of 15 female and 15 male subjects participated; each was a 
member of a collegiate sports team at Massachusetts Institute of 
Technology (MIT) and consented to participate according to IRB 
and NIH guidelines. In general, the study was conducted in con-
formity with the declaration of Helsinki and Good Clinical Practice 
[24]. Resting-state EEG was recorded in the sports facility by ath-
letic trainers who had previously learned to use the equipment and 
administer the EEG during a 5-hour training session. The training 
duration for the athletic trainers was up to five hours, which includ-
ed the vetting process of their EEG readouts prior to authorizing 
them to record EEG signals from the athletes.

A minimum of 15-min resting-state EEG with eyes closed was 
recorded while the subject sat in a chair. EEGs were recorded using 
StatNet, a single-use disposable system of 16 electrodes that takes 
less than 5 minutes to apply to the subject [25]. The StatNet was 
connected to microEEG, a portable, battery-operated, wireless, 
digital EEG recording system [26, 27]. The data were stored on a 
hard disk for offline clinical review by a board-certified neurologist, 
as well as separate quantitative analysis using digital signal process-
ing techniques that are detailed next.

Data analysis
The digital signal processing and calculations described in this 
paper used Matlab v.9.3.0.713579 (The MathWorks, Inc., Natick, 
Massachusetts, United States).

Pre-processing
The raw EEG was first pre-processed to minimize or eliminate signal 
artefacts originating from outside the brain. Initially the recordings 
were visually inspected in the frequency and time domains. The 
power spectra of all the recordings contained an alpha rhythm peak 
(8–12 Hz), especially in the parietal and occipital areas, and the 
amounts of relative power in any frequency bands contained no gross 
inconsistency relative to expectations [27]. The 0.16–70 Hz band-
pass-filtered voltage time-series were inspected for the presence of 
artefacts such as eye blinks, eye movements, electromyogram or 
muscle activity, motion effects, and electrocardiogram. EEG time 
segments contaminated with such patterns constituted < 10 % of any 
single recording. Consequently, no recordings were excluded from 
the study.

The effects of artefacts on subsequent quantitative analyses 
were minimized and signal-to-noise was maximized by an artefact-
rejection data pre-processing pipeline that included an independ-
ent component analysis (ICA)-based artefact rejection scheme 
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[28, 29]. Bandpass filtering (0.16 Hz to 40 Hz) reduced slow drifts 
and high frequency artefacts with a zero phase-shift Hamming win-
dowed-sinc FIR filter (EEGLAB function ‘pop_eegfiltnew’). Then ar-
tefacts were identified and removed objectively using the ADJUST 
method [30]. The filtered continuous EEG data first undergoes ICA 
decomposition with an Extended-Infomax algorithm [31]. ADJUST 
then detects and removes the artefact-independent components 
associated with eye blinks, horizontal and vertical eye movements, 
and generic discontinuities. It then reconstructs a cleaned version 
of the original data. ▶Fig. 1 shows a fragment of multichannel EEG 
data with an eye blink artefact before and after removing the arte-
fact by the ADJUST method.

Feature extraction
Both univariate (based on data from a single sensor) and multivar-
iate (multiple sensors) features were used to develop methods for 
objectively discriminating between groups of EEGs. Pre-processed 
EEG was first divided into a set of adjacent, non-overlapping fea-
ture time windows of fixed size ΔT For each window, we computed 
the univariate frequency band-power (FBP), multivariate phase 
locking value (PLV), and univariate modulation index (MI) to esti-
mate phase-amplitude coupling (PAC). These variables provide 
metrics to decode mental states as well as distinguish between nor-
mal and other brain activity patterns [32–34].
FBP: The frequency band power is calculated by integrating the 
power spectral density of EEG (within a feature time window) under 
a particular frequency range, then dividing it by the total power 
across the spectra. The magnitude of FBP estimates the local spa-

tio-temporal synchronization of extracellular inhibitory and excita-
tory currents [35, 36]. Our frequency ranges were chosen in 4 Hz 
increments from 0 to 32 Hz, namely delta (0–4 Hz), theta (4–8 Hz), 
alpha (8–12 Hz), beta1 (12–16 Hz), beta2 (16–20 Hz), beta3 (20–
24 Hz), beta4 (24–28 Hz), beta5 (24–28), and low gamma (28–
32 Hz). The upper bound was chosen to be low gamma since cer-
ebral activity contributes negligibly to scalp EEG beyond this range 
[37].
PLV: The phase locking value (PLV) measures the phase synchroni-
zation between the narrow-band filtered EEG recorded from a pair 
of distinct electrodes. Accordingly, PLV quantifies long-range, fre-
quency-specific, amplitude-independent phase synchronization of 
EEG oscillations between brain areas to estimate inter-area neural 
integration [38]. We computed PLV after filtering the EEG in 2-Hz 
wide bands that were centered at 4, 10, 20, and 40 Hz, which al-
lows for precise estimates of phase [32]. The signal pairs were se-
lected to be intra-hemispheric (F7-T5, F3-P3, F4-P4, F8-T6, FP1-O1, 
FP2-O2), inter-hemispheric symmetric (FP1-FP2, F7-F8, F3-F4, T3-
T4, T5-T6, O1-O2), and inter-hemispheric asymmetric (FP1-O2, 
FP2-O1, F7-T6, F8-T5). PLV values of 1 indicate that the phase dif-
ference between the two signals is constant, whereas PLV values 
of zero indicate that the phase difference is uniformly distributed 
between 0 and 2π [33, 39]. To calculate the PLV, the pair of EEG sig-
nals were bandpass-filtered at a given frequency within a 2 Hz wide 
band, their phases extracted via the Hilbert transform, the phase 
difference, Δθ, between the two signals was computed at every 
data point, and the PLV for a particular window was found as the 
absolute value of the mean of exp{iθ} over the window [40].  
(Note i=√-1.)
PAC: The phase-amplitude co-modulation estimates phase-ampli-
tude coupling between the phase of a low frequency oscillation in 
the EEG and the amplitude of a high frequency oscillation, provid-
ing an estimate of local, multi-frequency organization of neuronal 
activity [41–43].

Following previous work, we chose the low frequency ranges 
theta and alpha, and high frequency ranges 15–25 Hz and 
30–40 Hz. PAC was computed using the Kullback-Leibler divergence 
between the uniform distribution and the phase-amplitude distri-
bution obtained from bandpass-filtered signals [44, 45].

Classification and validation
We used support vector machine (SVM) binary classification to 
make inferences about whether particular recordings belonged to 
the subgroups designated as Baseline (BL), Injury (IN), or Post-Sea-
son (PS). Since the smallest data set (IN) contained 12 recordings, 
we randomly selected 12 recordings from each of the BL and PS 
sets to have an equal number of recordings from each class. This 
ensured that the chance value for correct classification would be 
0.5. After feature extraction the data were in the form of a matrix 
whose columns are different features and rows are time windows 
(or an observation). Every observation in our experiments has an 
associated label, BL, IN, or PS, thus the problem was suitable for 
analysis by supervised machine learning (ML). Supervised ML ap-
proaches in general, and SVM in particular, take advantage of dis-
tributed and subtle patterns of activation that are otherwise pos-
sibly undetectable, to allow inference at the level of the individual 
subject and specific time window, rather than at the group level. 

898

T4
A2
C3
C4
A1
T3
O1

O2

EE
G

 c
ha

nn
el

s

CZ
F8
T6
FZ

Fp2

Fp1
F7

T5

a

T4
A2
C3
C4
A1
T3
O1

O2

EE
G

 c
ha

nn
el

s

Time (s)

CZ
F8
T6
FZ

Fp2

Fp1

0 1 2 3 4 5

F7

T5

b

▶Fig. 1 The effect of artefact-detection preprocessing. A fragment 
of multichannel EEG data contaminated by blink artefact (a) before 
and (b) after the data are cleaned by the ADJUST method. The high-
lighted segments of the data show the effect of blinking on EEG 
channels.
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SVM classifies data points by maximizing the margin between class-
es in a high-dimensional feature space (for a review and references 
[46]. We used SVM for pairwise binary classification.

For testing we used leave-one-out cross-validation (LOOCV). 
This was implemented by leaving out one observation for training 
the SVM, which was then tested on the left-out observation. This 
process was repeated for each observation. The Matlab functions 
svmtrain, svmclassify, and cvpartition were used to implement the 
above calculations. To evaluate performance, accuracy was deter-
mined as the fraction of observations that could be correctly iden-
tified in the test data.

Statistical analysis
We used statistical tests to determine the significance of our re-
sults. Specifically, we used a binomial test which calculates the 
 p-value based on the total number of observations in each class 
and the chance level of accuracy [33, 47]. To test the significance 
of phase locking values (PLV), we created a null distribution assum-
ing random phase differences. The p-value of PLV was calculated 
for each subject and time window from the null distribution. We 
then considered a global null hypothesis that the PLV was no bet-
ter than chance for any subject and time window. We used the Bon-
ferroni procedure to control for multiple comparisons and deter-
mined significance if p  <  alpha/k, where alpha was set to 0.05 and 
k was the total number of tests.

We chose the relatively conservative, non-parametric Kolmog-
orov-Smirnov (KS) test to evaluate this null hypothesis.

Results
Forty-seven EEGs were recorded from 30 distinct subjects. All EEGs 
were evaluated by a board-certified neurologist EEG reader and all 
were assessed to be technically valid and interpreted as normal, in-
cluding 14 post-season EEGs, and 12 injury EEGs from 9 subjects. 

Three subjects contributed two injury EEGs each, and because the 
intervals between the two EEGs were 6, 26, and 56 days, they were 
treated as independent samples. None of the injury subjects had 
provided baseline EEGs and none provided post-season EEGs. The 
median duration of the EEG recordings was 21.3 minutes, with a 
minimum duration of 19.6 minutes and with two recordings last-
ing an hour or longer. It is therefore demonstrated that with the 
StatNet and microEEG systems, it is feasible for athletic trainers to 
record clinically valid resting-state EEGs from student athletes in 
the sports facility.

We then used machine learning to evaluate whether there were 
differences between the three classes of EEG. ▶Fig. 2 shows the 
values of accuracy of binary discrimination between pairs of EEG 
classes for feature windows of fixed size ΔT = 120 s (shorter ΔT = 60 s 
and longer ΔT = 240 s feature windows did not lead to different con-
clusions). ▶Fig. 2 shows the classification results after partitioning 
the data in different ways. When as much of the available data are 
used with the limit in each class set by the class with the lowest 
number of EEGs (IN = 12), we find that BL and IN could be discrimi-
nated with 81 % accuracy using the FBP, PLV, and PAC EEG features 
together, even though discrimination based on any one feature was 
no better than chance. This suggests there may be a potential for 
additive effects, at least with small datasets such as this (▶Fig. 2a). 
Selecting only the highest quality EEGs (N = 8 for each class) did not 
change the result, but now FBP and PLV measures alone were able 
to discriminate BL and IN better than chance, in addition to the 
three measures together (▶Fig. 2b). Limiting one injury EEG to a 
subject reduced the accuracy of SVM discrimination to chance 
(▶Fig. 2c; N = 10), unless the data set was limited to the highest 
quality EEGs, in which case eliminating the redundant EEGs had no 
effect (▶Fig. 2d; N = 8). Given that BL and PS EEGs could not be dis-
criminated using the three EEG measures together (discrimination 
using one measure but not all three are likely the result of overfit-
ting and limited data) and BL and IN EEG can be discriminated, one 

▶Fig. 2 Accuracy of automated binary classification of Baseline (BL) vs. Injury (IN), Baseline vs. Post-Season (PS), and PS vs. IN, with feature window 
size ΔT = 120 s. The horizontal shaded areas in the background indicate 95 % of the null density of accuracy. (*p < 0.05.) (a) All available EEGs in class 
IN were used regardless of quality so that there were 12 recordings in every class. (b) EEGs were selected for quality so that there were 8 recordings 
in each class. Multiple recordings from subjects were allowed in (A) and (B); there were 2 such recordings, both in class IN. Decreasing quality was 
measured in terms of the number of segments that had been removed due to artefacts (maximum of 60 cuts being used as the quality threshold). 
(c) All available EEGs in class IN were used regardless of quality, but multiple recordings per subject were disallowed, so that there were 10 recordings 
in every class. (d) EEGs were selected for quality and multiple recordings per subject were disallowed, so that there were 8 recordings in each class.

1
Baseline v Injury

Ac
cu

ra
cy

Baseline v Post-Season Post-Season v Injury
a

c

0.8 * *
*

*

*

0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

FBP
PLV
PAC
TOT

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
Baseline v Injury Baseline v Post-Season Post-Season v Injury

b

d

0.8 *

**

**

*

*
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Abdul Baki S et al. Relaxed Alert Electroencephalography Screening … Int J Sports Med 2023; 44: 896–905 | © 2023. Thieme. All rights reserved.

Clinical Sciences Thieme

900

might expect that IN and PS EEGs to also be discriminable. Howev-
er as shown in ▶Fig. 2, this was not reliably the case. Although the 
pattern of results presented ▶Fig. 2 demonstrates the possibility 
of successfully discriminating BL and IN EEGs, the inability to dis-
criminate PS and IN EEGs, as well as BL and PS, indicates there are 
non-linear complexities in using the SVM approach, likely due to 
the small data set, and sensitivity to artefacts in the EEGs.

Having examined the classification accuracy of various feature 
types, we investigated the spatiotemporal patterns in the values 
of the various types of features in the different EEG classes BL, IN, 
and PS.

▶Fig. 2 suggested that FBP may differ significantly between the 
baseline and injured subjects. ▶Fig. 3 compares the topographic 
distribution of this feature for the delta to alpha frequency ranges. 
The figure indicates clear differences in the distribution of delta, 
theta, and alpha power between the BL and IN groups. Meanwhile 
the BL and PS groups appear to differ, to a smaller extent, only in 
alpha power distribution. Overall, the IN EEGs appear to express re-
duced frontal delta and increased frontal theta, providing a basis 
for SVM discriminations.

To further investigate this hypothesis, we considered the chan-
nel-averaged FBP in the different frequency ranges in ▶Fig. 4a. 
Overall delta, theta, and alpha power do not appear different in the 
three groups of EEG, not only is the inter-subject variability large, 
but as can be seen in ▶Fig. 4, the abnormal power is not homoge-
neously distributed across the scalp and thus not measurable as a 
spatial average. We nonetheless examined whether combinations 
of power in various frequency bands could provide a succinct dis-
criminator of non-injured and injured EEGs. To visualize this possi-
bility, we show in ▶Fig. 4b the recordings as a scatter plot in the 
plane of Theta/Gamma (x-axis) and Alpha/Delta power (y-axis). The 
figure indicates that injured subjects may have greater values of 
these two composite variables, relative to the BL and PS recordings, 
which appear to be mostly lumped together close to the origin. 
However, although the regions occupied by the IN versus other 
classes of recordings are somewhat distinct, they are not disjoint-
ed and there is substantial overlap.

▶Fig. 2 highlighted PLV as an important discriminator of IN, 
suggesting that frequency-specific inter-area synchrony may be al-
tered in injured subjects. We now investigate the specific frequen-
cies and pairs of sites that may differentially contribute to this 
 result. ▶Fig. 2 shows PLV calculated for 4 Hz (top row), 10 Hz (2nd 
row), 20 Hz (3rd row), and 30 Hz (bottom row). The error bars show 
the standard deviation of intersubject variability. Values of PLV dif-
fering significantly between any pair of groups are indicated by an 
asterisk above the pair of bars (*p < 0.05.). The figure clearly flags 
mostly frontal inter-hemispheric connectivity as an important dis-
criminator of the IN state, since most of the significantly differing 

▶Fig. 3 Topographic distribution of frequency band power 
ΔT = 60 s. Electrode locations are indicated by small grey dots. The 
values shown (color bar at right) represent averages over the entire 
set of recordings in the class BL (left column), IN (middle), or PS 
(right).
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PLV values occur in pairs that symmetrically connect the frontal 
hemispheres (FP1-FP2, F7-F8, and T3-T4).

Additional details are provided in ▶table 1, which displays the PLV 
at multiple frequencies and locations. The value of the PLV is provid-
ed for the Baseline, Injury, and Post-Season states. Each one of these 
PLVs is statistically significant in accordance with the Bonferroni cor-
rected procedure described in the Methods section. To the right of 
the three PLV columns, an additional three columns show whether 
the differences in PLV between IN and BL, PS and IN, and PS and BL 
were statistically significant. The table includes only frequencies and 
locations for which at least one of these differences was significant. 
Significance was calculated by a non-parametric method explained 
in the Methods section. It is indicated by an asterisk in the table. The 
differences are also color-coded, so that red indicates a positive and 
blue a negative difference. For example, if the PLV for injured record-
ings was lower than baseline, then the table entry under IN-BL is blue.

The table shows that PLV of injured subjects was generally lower 
than baseline in the lower frequencies (up to low gamma range) in 
some frontal inter-hemispheric electrode pairs (blue squares in col-
umn titled IN-BL). They were also lower than the PLV measured 
post-season (red squares in column titled PS-IN). In addition, the 
table indicates that in these frequencies and pairs of sites, post-
season PLV was lower than baseline (blue squares in column titled 
PS-BL).

▶table 1 Phase locking value (PLV) for the Baseline (BL), Injury 
(IN), and Post-Season (PS) averaged over subjects, and the statisti-

cal significance (*p > 0.05) and positive/negative (red/blue) in dif-
ference in the PLV of two states. The most available quality-select-
ed data (N = 8, as in ▶Fig. 2b) were used for these comparisons.

To visualize the changes in functional connectivity implied by 
the values in ▶table 1 and ▶Fig. 5, we plot each statistically sig-
nificant PLV difference as a line that connects the corresponding 
pair of electrodes in ▶Fig. 6. The figure shows that PLV changes are 
associated mostly with the inter-hemispheric pair F7-F8 in the 
delta, alpha, and beta frequencies, while they are also associated 
with intra-hemispheric connections centering on F8 in the low-
gamma frequencies.

Discussion and conclusions
This paper addressed the diagnosis of mTBI, a public health con-
cern affecting a very large population including children, athletes, 
and military personnel. The study was designed as a proof-of-prin-
ciple feasibility trial, importantly without an independent control 
group. Nonetheless, this design yielded results demonstrating that 
it is feasible for athletic trainers at a sports facility to record clini-
cally valid, high-quality resting-state EEGs from student athletes. 
The findings also show that spatially-localized metrics of EEG syn-
chrony can discriminate mTBI-associated EEGs from control EEGs. 
These findings provide proof-of-concept evidence that resting-
state EEG is a practical, non-invasive measurement technique that 

▶table 1 Phase locking value (PLV) for the Baseline (BL), Injury (IN), and Post-Season (PS) averaged over subjects.

Frequency (Hz) Electrode Pairs PLV PLV Difference

Baseline (BL) Injury (IN) Post-Season (PS) IN-BL PS-IN PS-BL

4 FP1-FP2 0.758 0.66 0.614 * *

F7-F8 0.854 0.754 0.863 * *

T3-T4 0.578 0.485 0.586 *

10 FP1-FP2 0.821 0.795 0.728 * *

F7-F8 0.81 0.715 0.823 * *

15 FP1-O1 0.275 0.24 0.279 *

FP1-FP2 0.757 0.628 0.595 *

F7-F8 0.789 0.685 0.811 *

FP1-O2 0.223 0.195 0.251 *

20 FP1-FP2 0.732 0.619 0.567 *

F7-F8 0.791 0.724 0.815 *

25 FP1-FP2 0.712 0.562 0.513 *

F7-F8 0.79 0.732 0.816 *

30 F8-T6 0.325 0.375 0.365 *

FP1-FP2 0.703 0.498 0.45 *

F7-F8 0.787 0.716 0.811 *

F8-T5 0.271 0.36 0.328 *

35 F8-T6 0.289 0.329 0.325 * *

FP1-FP2 0.69 0.452 0.403 *

F7-F8 0.779 0.701 0.802 * *

F8-T5 0.235 0.322 0.291 *

40 FP1-FP2 0.687 0.448 0.407 *

F7-F8 0.777 0.706 0.804 *

F8-T5 0.232 0.331 0.294 *
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can be implemented by minimally trained personnel to help diag-
nose mTBI. Performing on-site head trauma screening or assess-
ment on the sidelines is preferred for timely evaluation and deci-
sion-making. This approach is particularly important for mild inju-
ries where symptoms may not be immediately apparent and there 
is a risk of second impact syndrome.

There were differences among the Baseline, Injury, and Post-
Season EEGs in the frequency band power features, which estimates 
the degree of synchronized synaptic currents local to the electrode 
site, effects of volume conduction notwithstanding. Reduced delta 
and increased theta at frontal sites characterized injury EEGs, with 
only a weak tendency to increased alpha at posterior sites (▶Fig. 3). 
With respect to the Baseline EEGs, the Injury EEGs had higher theta 
and lower delta power. Interestingly, relative to Baseline EEGs, we 
also found that the Post-Season EEGs had frequency-band- and lo-
cation-specific changes that were in the opposite direction as the 
injury-associated EEGs. Such alterations were sufficient for 25 % 
above chance accuracy of classifying Baseline and Injury EEGs 
(▶Fig. 2). While the observed power differences were relatively 
specific, they did not differentiate between the EEGs of the Base-
line and Post-Season groups. This is not unexpected, as both groups 
were comprised of athletes without head injuries and were antici-
pated to have comparable features. Furthermore, these power dif-

ferences were also insufficient to distinguish between the EEGs of 
the Injury and Post-Season groups.

In contrast, we found no systematic EEG class differences in es-
timates of PAC computed locally, i. e., at single electrode sites. It is 
worth noting that inter-area PAC based on resting-state magne-
toencephalography of mTBI patients was found to differ between 
mTBI patients and controls, suggesting that mTBI might affect 
measures of inter-areal neural synchronization, which depend on 
the coordination of long-range conduction velocities and delays 
that are mediated in part by the integrity of myelination [48].

Consistent with inter-areal disturbances in mTBI, prominent dif-
ferences among the three EEG classes were found in the phase lock-
ing index that estimates the degree of frequency-specific phase 
synchronization between distinct brain areas. Although we calcu-
lated PLV for multiple pairs of sites, the statistically significant in-
jury-associated alterations were found mostly in inter-hemispher-
ic symmetric sites at frontal electrodes and mid-line (▶Fig. 6). 
These are populations located on either side of and equally distant 
from the midline sagittal plane, such as the left and right orbito-
frontal sites FP1 and FP2. The inter-group changes were particu-
larly strong at 4 and 10 Hz, which are EEG oscillation frequencies 
known to have non-local biophysical origins, unlike gamma, which 
is generated locally [49]. As in the case of FBP, these differences are 

▶Fig. 5 PLV at multiple frequencies and pairs of electrodes. The error bars indicate the standard deviation of intersubject variability. (*p < 0.05)
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sufficient for a 25 % greater than chance accuracy of classifying 
Baseline and Injury EEGs (▶Fig. 2).

Thus, the present findings are consistent with reduced inter-
hemispheric synchrony that can be attributed to changes in white 
matter microstructure, including weakened alpha frequency inter-
hemispheric synchrony that can be detected by resting state mag-
netoencephalography of mTBI patients [34, 50–52].

mTBI patients often suffer from problems in attention, memo-
ry, and executive function, all high-level functions enabled by mul-
tiple brain regions integrated by long-range connections [53]. Elec-
trographic findings from mTBI patients include slowing and re-
duced alpha activity and such findings within the first 24 h have 
been associated with worse recovery, however traditional EEG in-
terpretation needs to be enhanced by quantitative analysis to re-
veal changes to functional connectivity, as suggested by the pre-
sent findings [54].

Thus, our findings, though preliminary, are nonetheless consist-
ent with the reduced inter-hemispheric functional connectivity 
that was reported in a fMRI study of athletes with mTBI at 10 days 
after injury [50]. Resting-state fMRI of mTBI patients also showed 

reduced connectivity in the default mode network pattern in the 
days and weeks following injury [49, 55, 56].

Despite its advantages in superior spatial resolution, the ex-
pense and lack of portability make fMRI largely unsuitable for many 
applications, whereas as demonstrated here, resting-state EEG with 
portable and easy-to-deploy equipment may be convenient, feasi-
ble, and similarly effective to screen for mTBI and for evaluating re-
turn-to play decisions.

Our results may form the basis for a rapid and practical method 
to diagnose mTBI in the clinic as well as in the field but additional, 
controlled studies with independent injury and control groups will 
be important for validating this possibility. Better diagnosis of mTBI 
would not only help in the management of athletes but also help 
increase the efficiency of clinical trials through methods suitable 
for identifying a cohort of mTBI patients at higher risk of develop-
ing long-term problems [57]. The study represents a step towards 
increasing access to brain injury care and reducing inequity in var-
ious settings, including the military, and athletic facilities. This ap-
proach has the potential to contribute to the development of more 
effective and accessible tools for the detection of mild traumatic 
brain injuries, with broad implications for the improvement of func-
tional outcomes and quality of life of those affected.

The ability to identify patients at high risk of long-term prob-
lems would help to appropriately channel scarce clinical resources 
such as specialty follow-up and rehabilitation. Clinical trials are like-
ly to be enriched if they recruit patients with a high probability of 
brain dysfunctions post-injury.
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