Synlett 2023; 34(18): 2210-2214
DOI: 10.1055/a-2071-4465
cluster
Modern Boron Chemistry: 60 Years of the Matteson Reaction

Direct α-Trifluoromethylthiolation of Carboxylic Acids Enabled by Boron Catalysis

Kai Sun
b   Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
,
a   Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
,
a   Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
b   Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
,
Yohei Shimizu
a   Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
b   Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant No. JP22H05329 in Digitalization-driven Transformative Organic Synthesis), Grant-in-Aid for Scientific Research (B) (No. JP20H02729), and Grant-in-Aid for Challenging Reserach (Exploratory, No. JP22K19016) to YS. CYH acknowledged the financial supports by Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) and Hokkaido University.


Abstract

A boron-catalyzed direct α-trifluoromethylthiolation of carboxylic acids was developed. Catalytically generated boron enediolates reacts with electrophilic SCF3 reagent, N-SCF3-phthalimide, to provide α-SCF3 carboxylic acids without the need of substrate pre-activation. The method is applicable to direct modification of bioactive carboxylic acids. Data science analyses provided suitable models for substrate classification as well as yield prediction.

Supporting Information



Publication History

Received: 13 March 2023

Accepted after revision: 11 April 2023

Accepted Manuscript online:
11 April 2023

Article published online:
15 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1b Kirik KL. J. Fluorine Chem. 2006; 127: 1013
    • 1c Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 1d Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 1e Zanda M. New J. Chem. 2004; 28: 1401
    • 1f Jeschke P. ChemBioChem 2004; 5: 570
    • 2a Hansch C, Leo A. Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley; New York: 1979: 339
    • 2b Barata-Vallejo S, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 7150
    • 3a Rossi S, Puglisi A, Raimondi L, Benaglia M. ChemCatChem 2018; 10: 2717
    • 3b Barthelemy A.-L, Manier E, Dagousset G. Synthesis 2018; 50: 4765
    • 3c Ghiazza C, Billard T. Eur. J. Org. Chem. 2021; 5571
    • 4a Saidalimu I, Yoshioka T, Liang Y, Tokunaga E, Shibata N. Chem. Commun. 2018; 54: 8761
    • 4b Kondo H, Maeno M, Sasaki K, Guo M, Hashimoto M, Shiro M, Shibata N. Org. Lett. 2018; 20: 7044
    • 4c Jin MY, Gu X, Deng M, Wang C, Wang J. Chem. Commun. 2020; 56: 10552
    • 5a Alazet S, Ismalaj E, Glenadel Q, Le Bars D, Billard T. Eur. J. Org. Chem. 2015; 4607
    • 5b Jiang L, Yan Q, Wang R, Ding T, Yi W, Zhang W. Chem. Eur. J. 2018; 24: 18749
    • 6a Capaccio V, Sicignano M, Rodríguez RI, Sala GD, Aléman J. Org. Lett. 2020; 22: 219
    • 6b Franco F, Meninno S, Lattanzi A, Puglisi A, Benaglia M. J. Org. Chem. 2021; 86: 14207
    • 6c Franco F, Meninno S, Benaglia M, Lattanzi A. Chem. Commun. 2020; 56: 3073
    • 6d Zhang H, Shen Q. Tetrahedron 2021; 101: 132508 I Sicignano M., Rodríguez R. I., Capaccio V., Borello F., Cano R., De Riccardis F., Bernardi L., Díaz-Tendero S., Sala G. D., Aléman J.; Org. Biomol. Chem.; 2020, 18: 2914
    • 7a Lübcke M, Yuan W, Szabó KJ. Org. Lett. 2017; 19: 4548
    • 7b Zhang Z, Sheng Z, Yu W, Wu G, Zhang R, Chu W.-D, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970
    • 7c Hu M, Rong J, Miao W, Ni C, Han Y, Hu J. Org. Lett. 2014; 16: 2030
    • 7d Wang X, Zhou YJ, Ji G, Wu G, Li M, Zhang Y, Wang J. Eur. J. Org. Chem. 2014; 3093
    • 7e Lefebvre Q, Fava E, Nikolaienko P, Rueping M. Chem. Commun. 2014; 50: 6617
    • 8a Mizuta S, Kitamura K, Morii Y, Ishihara J, Yamaguchi T, Ishikawa T. J. Org. Chem. 2021; 86: 18017
    • 8b Li SG, Zard SZ. Org. Lett. 2013; 15: 5898
  • 9 Jiang X, Meyer D, Baran D, Cortés MA, Szabó KJ. J. Org. Chem. 2020; 85: 8311
    • 10a Shimizu Y, Kanai M. Chem. Rec. 2023; e202200273
    • 10b Sawamura M, Shimizu Y. Eur. J. Org. Chem. 2023; 26: e202201249
    • 10c Sun K, Ueno M, Imaeda K, Ueno K, Sawamura M, Shimizu Y. ACS Catal. 2021; 11: 9722
    • 10d Morisawa T, Sawamura M, Shimizu Y. Org. Lett. 2019; 21: 7466
    • 10e Fujita T, Yamamoto T, Morita Y, Chen H, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2018; 140: 5899
    • 10f Ishizawa K, Nagai H, Shimizu Y, Kanai M. Chem. Pharm. Bull. 2017; 66: 231
    • 10g Nagai H, Morita Y, Shimizu Y, Kanai M. Org. Lett. 2016; 18: 2076
    • 10h Morita Y, Yamamoto T, Nagai H, Shimizu Y, Kanai MJ. Am. Chem. Soc. 2015; 137: 7075
    • 10i Chen H, Yamaguchi S, Morita Y, Nakao H, Zhai X.-N, Shimizu Y, Mitsunuma H, Kanai M. Cell Rep. Phys. Sci. 2021; 2: 100679
    • 10j Hu H, Wang C, Wu X, Liu Y, Yue G, Su G, Feng J. Org. Chem. Front. 2022; 9: 1315
  • 12 Sigman MS, Davies HM. L. J. Am. Chem. Soc. 2022; 144: 15549
  • 13 The program used for logistic regression can be found here (accessed Mar 13, 2023): DOI: https://github.com/DWs-code-drink/SCF3_Logistic.
  • 14 General Procedure for α-Trifluoromethylthiolation of Carboxylic Acids Carboxylic acid (0.1 mmol, 1.0 equiv) was added to a 4 mL vial and then brought into the glove box. (AcO)4B2O (2.7 mg, 0.1 equiv), THF (1 mL), DBU (35.7 μL, 2.4 equiv), and N-(trifluoromethylthio)phthalimide (37.1 mg, 1.5 equiv) were sequentially added. The vial was sealed and removed from the glove box, and the resulting solution was stirred for 2 h at room temperature (23–28 ℃). MeI (37.4 μL, 6.0 equiv) was consequently added, and the reaction mixture was left stirred for another 2 h. Then, the reaction was worked up by adding 2 mL of 2:1:1 solution of brine, water, and 4 M HCl, followed by extraction with EtOAc (3 times). The combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. To this crude product was added tetrabromoethane (11.6 μL, 0.1 mmol) and hexafluorobenzene (34.6 μL, 0.3 mmol) as the standards for the determination of NMR yield. The residue was then purified by silica gel chromatography on a Biotage Isolera One using a dry-load method.