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Abstract Background A large volume of heavily fragmented data is generated daily in different
healthcare contexts and is stored using various structures with different semantics.
This fragmentation and heterogeneity make secondary use of data a challenge. Data
integration approaches that derive a common data model from sources or require-
ments have some advantages. However, these approaches are often built for a specific
application where the research questions are known. Thus, the semantic and structural
reconciliation is often not reusable nor reproducible. A recent integration approach
using knowledge models has been developed with ontologies that provide a strong
semantic foundation. Nonetheless, deriving a data model that captures the richness of
the ontology to store data with their full semantic remains a challenging task.
Objectives This article addresses the following question: How to design a sharable
and interoperable data model for storing heterogeneous healthcare data and their
semantic to support various applications?
Method This article describes a method using an ontological knowledge model to
automatically generate a data model for a domain of interest. The model can then be
implemented in a relational database which efficiently enables the collection, storage,
and retrieval of data while keeping semantic ontological annotations so that the same
data can be extracted for various applications for further processing.
Results This article (1) presents a comparison of existing methods for generating a
relational data model from an ontology using 23 criteria, (2) describes standard
conversion rules, and (3) presents O n t o R e l a , a prototype developed to demonstrate
the conversion rules.
Conclusion This work is a first step toward automating and refining the generation of
sharable and interoperable relational data models using ontologies with a freely
available tool. The remaining challenges to cover all the ontology richness in the
relational model are pointed out.
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Introduction

A large volume of healthcare data is generated daily in many
contexts. In some of them, data are heavily fragmented across
multiple heterogeneous systems. To provide care, manage a
hospital, run clinical trials, or help clinicians make better
decisions, the core need is to understand an individual’s
data through a broad scope (e.g., billing relies on integrating
diagnosis and treatment data to sum the costs). Consequently,
the semantic and structural reconciliation for the secondary
use of data is a challenging task that can lead to incorrect
interpretation if not correctly automated and verified.

This challenge is compounded by the fact that health data
are highly dependent on contextual information. For example,
a diabetes code could represent a working diagnosis, an
established diagnosis, a family history of diabetes, or even a
reason to ask for a test. Thus, to operate safely, the processes
rely not onlyon accessingdata frommultiple systems, but also
on the semantic of the data.1 The semantics include the nature
of the element (e.g., being a patient is a role, the same
individual can have the role of a patient when going to the
emergency for a fracture fixed, but also the role of a physician
when coming to work as an orthopaedic surgeon to fix a
fracture) and explicit relationshipswith other elements (e.g., a
diagnosis ofdiabetes is about an individualwho ismymother).

Accordingly, this article addresses the question: How to
design a sharable and interoperable data model for storing
heterogeneous healthcare data and its semantic to support
various applications?

In many heterogeneous environments, a sharable and
interoperable data model based on a knowledge model has
been demonstrated as a valid approach to decipher the
structure and identify relevant data elements to be extracted
or combined in a semantically interoperable sound way.2

Furthermore, to control data integrity while manipulating a
large amount of data, a relational database (RDB) is an
appropriate system to store data due to its embedded access
control, transaction management, data integrity control,
efficiency, and performance.3 However, conventional tech-
niques (entity-relationship, star schema, object-oriented
techniques) do not provide sufficient semantic or contextual
information for efficient use of a data model in a heteroge-
neous environment and ensure reliable reuse of data outside
a restricted field of its original application.1,4Moreover, data
generated across different systems (e.g., health ministries,
pharmacies, clinics, hospitals) are often stored in RDBs, but
their semantic is rarely documented or updated. In other
words, conventional techniques do not offer adequate con-
struct to allow the unification of data with their semantic.
Thus, the multiple stages of data processing and the
exchanges that take place along the way can result in
incomplete semantics of the extracted dataset. Therefore, a
domain with such fragmentation and multiple data pro-
viders but with very low error tolerance needs a new
approach to encapsulate the data and their semantics into
the same structure that can be shared and reused for multi-
ple applications. Healthcare is one such domain, as life and
death decisions will be based on these data.

Various approaches exist5 to access or integrate data from
multiple sources. These approaches use different kinds of
inputs. Source-driven approaches use the data source’s struc-
ture. Requirement-driven approaches use the user require-
ments for a specific application. Hybrid approaches combine
the data structure of the sources and user requirements.
Finally, knowledge-driven approaches derive the data model
from the knowledge model of the domain. The knowledge-
driven approach is arguably the most appropriate for the
healthcare domain. Indeed, using a source-driven approach
is an arduous task because data sources are structured accord-
ing to the underlying application, and the addition of new
sources will often lead to changes to the model. Moreover,
using requirements is impractical because of the diversity and
evolution of user requirements. Finally, neither of these last
two approaches gives access (by themselves) to explicit se-
mantic as the predicates associated with a data model are
always dependent on the source application or a set of user
requirements at a specific point in time. On the contrary, a
knowledge-driven approach can provide a more stable data
model in which the semantic is made explicit1 and can serve
various applications.

Biomedical formal ontologies have been used to formalize
biomedical knowledge (e.g., genetics with Gene Ontology and
the ontology for biomedical investigations, a reference in the
field). They havebeen successfully used to supportmany data-
related processes such as data integration, data annotation,
and classification in many projects.6–8 Developing biomedical
formal ontologies is becomingmore andmoremature, and an
international community, the OBO Foundry, is engaged in
creating, coordinating, and maintaining these biomedical
ontologies.9 A realist ontology can be defined as “classes that
denote exclusively entities that exist objectively in reality and
[whose] definitions adhere to strict criteria to ensure that the
classes are reusable in other ontologies while preserving their
ontological commitment.”10 Thus, these ontologies can be used
as a knowledge model to describe a specific domain of
discourse objectively and formally. Therefore, deriving a rela-
tional data model directly from an ontology can be hypothe-
sized to be the best way to leverage heterogeneous data and
their semantic while ensuring integrity and concurrency
access for various applications. Specifically, a relational data
model generated from an ontology ensures explicit axiomati-
zation of themodel structure enabling access to data and their
associated semantic.Moreover, ontologies enable interactions
with thedatabasebyreferring toknowledge rather thanadhoc
table, field structure and naming. Consequently, data storage,
formulation and calculation of queries can bemore systematic
and reliable.

The presented method differs from other approaches in-
volving mapping ontologies and databases described in the
literature. Namely, the goal is not to create an ontology from
sourcedatabasesor tostoretheontology inadatabase. Instead,
the ontologyobjectivelycaptures thedomain’s semantic rather
than the database’s structure. In this way, the resulted RDB
reflects the ontology and explicitly ties it with the data. Also,
the method does not convert data into a triple store (Resource
Description Framework [RDF] triples) as it would not work in
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the use case of interest where the actors require a relational
endpoint for data integrity reasons. Nevertheless, if a process
benefits from transforming data from an RDB into a triple
store, thework presentedherewould still greatly facilitate and
simplify this task.

This article presents a method for deriving a relational
data model from an ontology using conversion rules that
covers more ontological constructs compared with existing
methods including axiom complexity reduction rules, an
implementation, OntoRelα, a freely available prototype
used to demonstrate the conversion rules on various ontol-
ogies, a use case, a brief survey of existing methods, and a
highlight of the contributions and remaining challenges.

Objective

Many limitations remain with the existing methods to
derive a sharable and interoperable relational data model
based on a knowledge model for a heterogeneous environ-
ment. More specifically, every relational construct must be
derived from a specific ontological construct uniformly in
the same way, to reach uniformity and consistency through
data integrity checks. Moreover, the generated data model
must not reflect decisions based on specific query require-
ments to allow data usage outside the source database’s
scope or a specific project. Consequently, the standardiza-
tion and automation of the conversion through a set of rules
increase the relevance and consistency of the derived
relational data model and reduce the risk of errors and
ambiguities that might be unnoticeably introduced by
choices influenced by undocumented aspects of the design-
ers’ reality. The objective is to address the gaps found in the
literature regarding ontological construct coverage, includ-
ing complex axioms found in biomedical ontologies, and to
offer a publicly available implementation. Thus, this article
presents an advanced conversion method and accessible
implementation that handles more ontological constructs
and complex axioms.

Method

An ontology is constructed using classes, individuals, axi-
oms, properties (object properties and data properties),
cardinality restrictions, datatypes, and annotations.11,12 A
relational model is constructed by a set of relations defined
by attributes (pairs of a unique name and a datatype), tuples,
constraints, and functions.13,14 Both models share common
foundations: the set theory and the first-order logic. Thus, at
least in part, a conversion from one to the other is possible.

The distinctive characteristic of the presented method is
that it is automated using uniform and consistent conversion
rules to capture the richness of the ontology. As a result, the
derived relational data model is shareable and interoperable
and is practical for storing heterogeneous health data for
various applications. The conversion rules must include an
axiom complexity reduction process and generate a highly
normalized relational schema to minimize data redundancy
and potential contradictions. The following illustrates a set of

conversion rules with examples presented by ontology con-
structs. A complete example can be found in Appendix C.

Conversion Rules
Class [C] is a set of individuals (also known as. instances). A
class is converted to a relation that includes an Individual
Identifier attribute (classIri_iid:iid_type) used as a primary
key (see ►Fig. 1). Each value of iid uniquely identifies an
individual. The class Thing (the superclass of all classes) may
be converted to a relation with one attribute, the iid. Thus,
the relation Thing contains all individual identifiers of the
database. This conversion makes it possible to define an
independent artificial key to index individuals.

Object Property [op] links two individuals. An object
property is converted to a relation including two iid attrib-
utes (see ► Fig. 2): the subject (subject_iid:iid_type) and the
object (object_iid:iid_type). This conversion allows direct
access to the links between the data of two relations and
allows to store links that are not explicitly specified by an
axiom of the ontology.

Property inheritance axiom [p0 v p1] defines an inheri-
tance between two properties. A property inheritance axiom
is converted into an “isa” referential key from the
sub-property relation to the super-property relation
(see ► Fig. 3). A referential key in a relational data model
links two relations. This conversion ensures data integrity by
preserving the taxonomy of the properties.

Fig. 2 Object property conversion example.

Fig. 1 Class conversion example (the ellipse represents a class
described using the short Internationalized Resource Identifiers [IRI]
and a label; the rectangle represents a relation described using the
relation name and the list of attributes).

Fig. 3 Property inheritance axiom conversion example.
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Class inheritance axiom [C0 v C1] defines an inheritance
between two classes. A class inheritance axiom is converted
into an “isa” referential key from the subclass relation to the
superclass relation (see ► Fig. 4). This conversion ensures
data integrity by preserving the taxonomy of the classes.

Class association axiom [C0 op qt C1] defines an association
between individuals belonging to two classes according to an
object property and a quantifier. An object property [op]
links two individuals. A quantifier [qt] is an interval of
integers that specifies the association’s cardinality in which
individuals can participate. A class association axiom is
converted into an association relation (a relation related to
two other relations) with two attributes, the primary key of
both associated class relations (see► Fig. 5). The primary key
of the association relation is composed of both attributes.
Moreover, three object property referential keys are defined
from the association relation to the primary key of each
associated class relation and property relation. Also, if qt.
min>0 and qt.max N, a quantification constraint is defined
to check the number of individuals according to the quantifi-
cation specified in the axiom. This conversion controls data
integrity byensuring that all the tuples in the relation have the
same predicate with respect to the quantifier.

Datatype [D] is a constrained set of values. A datatype is
converted into an SQL user-defined type reused to specify the
data attributes uniformly. For example, theOWL xsd:String is
converted to CREATE DOMAIN “xsd:String” AS TEXT (in the
PostgreSQL syntax). This conversion maintains the datatype
definition uniformly across all the relations.

Data association axiom [C0 dp qt D1] defines an association
between each individual of a class [C0] and a value of a
datatype [D1] according to a data property [dp] and a
quantifier. A data property links an individual to a value. A
data association axiom is converted into a data relation with
two attributes (see ► Fig. 6): the primary key of the class

relation and a data attribute. The data relation’s primary key
is composed of both attributes. One data property referential
key is defined from the data relation to the class relation. This
conversion controls data integrity by avoiding redundancy
and missing information.

Individual [I] is an entity of the modeled reality. An
individual is converted into a tuple inserted into the proper
relations according to the class of the individual (see► Fig. 7).
It is strongly recommended that iid attribute values be auto-
matically generated (e.g., Globally Unique Identifier [GUID]),
allowing independent individual indexing and automatically
propagating values into the relations.

Annotation describes an aspect of an ontological construct
with a text in a specific natural language. An annotation is
used to document the database and to provide multiple
access interfaces in different languages using views. A defi-
nition annotation is converted to SQL comment so they can
be integrated into the RDBMS catalog (if the target RDBMS
supports it). This conversion allows the documentation of
relational constructs within the schema.

Axiom Complexity Reduction
An ontological axiom can be defined using different expres-
sions that are logically equivalent. It follows that a consider-
able number of cases must be considered when dealing with
axioms such as complex axioms. A complex axiom is an
expression formed with multiple expressions connected
using a conjunction (AND) or a disjunction (OR) operation.
Complex axioms must be reduced into a simpler form to
ensure a rigorous conversion into predictable and consistent
relational constructs. Thus, axiom complexity reduction
functions are defined. The complexity reduction consists of

Fig. 7 Individual conversion example.

Fig. 4 Class inheritance axiom conversion example.

Fig. 5 Class association axiom conversion example.

Fig. 6 Data association axiom conversion example.
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generating a set of simple axioms from a set of complex
axioms. To simplify an axiom, each expression in the com-
plex axiom is replaced by a new uniquely named class
derived according to a set of rules. To simplify an ontology,
the process is applied recursively until all axioms are sim-
plified. Each expression in an axiom is syntactically analyzed
using the abstract grammar and reduced recursively accord-
ing to reduction rules until a set of simple axioms is reached.
More formal details can be found in Appendix B.

Here is a concrete didactic example of a subset of the
PDRO,15 an ontology about drug prescriptions, with one
complex axiom (in bold).

which can be derived into the following relational schema
(see ► Fig. 8).

Results

To illustrate the feasibility and the applicability of the
presented method, a prototype, OntoRelα, was developed.

As an input, OntoRelα takes an OWL ontology and some
configuration files. It outputs an RDB script for the Post-
greSQL database, a list of warnings to notify the user of
problems in the conversion process, a mapping catalog
between each ontological construct and relational construct
(named OntoRelCat), and a normalized version of the ontol-
ogy after the axiom complexity reduction. The resulted RDB
scripts can be executed on PostgreSQL v9.6þ . A small
example of the human body mass from the physiological
measurement ontology is presented in Appendix C.

The method is implemented through multiple processes
(see ►Fig. 9):

• The analysis process creates an instance of the normalized
ontology model (µOnto) using a source ontology and an
ontology configuration file that parameterizes the
process.

• The µOnto generator process generates a normalized
ontology with reduced axioms formalized according to
the µOnto language.

• The conversion process converts an instance of µOnto into
an ontological–relational model (OntoRel) according to
the relational model (µRel) using the RDB configuration
file that parameterizes the process.

• The OntoRelCat generator process generates the defini-
tions of construct in the OntoRel to build a human and
machine-readable mapping catalog.

• The SQL generator process generates a set of SQL scripts to
build the RDB.

Many open-source libraries were used to implement the
processes and the internal data structure: OWLAPI 5.1a to load
and analyze the ontology in OWL format; JGraphTb to create
graphs for the ontology and the database; Snakeyamlc to
analyze the configuration files in YAML format; StringTem-
plated for code generation and Jacksone to generate JSON files
for OntoRelCat.

The prototype was tested with various ontologies (espe-
cially the Genotype Ontology, Fanconi Anemia Ontology,
Ontology of Adverse Events, and the Prescription of Drugs
Ontology) of different sizes. Also, the resulted relational data
model was used in different use cases of the Quebec SPOR
Support Unit and the SPOR Canadian data platform.16 The
prototype and detailed results, including the RDB scripts, can
be found on GitHub: https://github.com/OpenLHS/OntoRela.

Use Case

Software used to record clinical data generally does
not provide explicit semantic to enable secondary use
of data without ambiguity. In addition, there is currently
no national standard for data exchange across institutions
and provinces in Canada. This use case illustrates the
context of drug prescriptions where researchers or physi-
cians need to extract information about drug and laborato-
ry prescriptions to make appropriate follow-up or identify
inappropriate or missing prescriptions. Users are faced
with many challenges, including and not limited to
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heterogeneity in levels of generality in drug administration
and dispensing specification, homonymy, and dosing
instructions.15 Moreover, merging data of drugs and labo-
ratory results stored in different databases is not a straight-
forward task.

PDRO,15 an ontology about drug prescriptions, is used to
illustrate this use case with examples. OntoRelα generates
the relational datamodel, and the database can be populated
from data sources using Extract–Load–Transform processes
or mediation systems. In this way, one query suffices to
obtain needed data at various levels of generalitywithout the
need to explore each source separately to understand the
content.

Consider parts of two drug prescriptions termed “Drug
administration specification” (DAS) and “Drug dispensing
specification” (DDS) written on a paper or stored in a
nonstandard database:

• (DAS1) “Metoprolol 50mg PO bid” instructs taking Meto-
prolol 50mg per mouth (PO) twice a day (bid),

• (DDS1) “Apo-Metoprolol 50mg tab, 1 tab PO bid” instructs
taking one tab of Apo-Metoprolol 50mg per mouth twice
a day.

With DAS1, most clinicians would intend to prescribe the
active ingredient “Metoprolol” rather than a specific drug

Fig. 8 Example of relational schema with data.
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product name manufactured by a specific company like
“Apo-Metoprolol” because all pharmacies do not have in
inventory every possible brand. However, DDS1 does refer
to such a specific pharmaceutical product. Moreover, even
strings that are identical in their composition and order of
characters may have different meanings. For example,
“Metoprolol” in DAS1 would usually refer to any drug
product containing metoprolol or to the active ingredient
metoprolol itself, although it might refer to the generic drug
product branded with the name “Metoprolol” in some
cases. Moreover, the information on the prescribed drug
may differ from the dispensed drug, and more often, data-
bases do not distinguish between them (between the DAS
and the DDS).

These issues are solved using a relational data model
generated from an ontology because it provides the explicit
semantic of the data. The data model is illustrated in two
forms: the graph form (►Fig. 10) and the relational form
(►Fig. 11). ►Fig. 10 illustrates, as a graph, part of the
generated relational data model from PDROwith data exam-
ples. The full rectangles represent a data relation containing
tuples. The dotted rectangles represent a class relation with

calculated tuples. The lines represent the association
relations.

►Fig. 11 illustrates part of the generated relational data
model from PDRO with data examples.

Finally, for other use cases, the relational data model can
be used as a targetmodel to store data extracted fromnatural
language processing or for classification using ontology
reasoners.

Related Work

The literature suggested several methods to derive a rela-
tional data model from an ontology. A literature review was
conducted in mid-2018 to explore methods published after
2010 describing RDB generation from an ontology.17 A list of
23 criteria was defined to evaluate and compare the 10 most
relevant papers.

The present article extends this review with recent pub-
lications and criterion coverage details (see Appendix A).
The evaluated papers: A1.Dou.2010,18 A2.Bellatreche.2010,19

A3.Saccol.2011,20 A4.Vyšniauskas.2012,21 A5.Hornung.
2013,22 A6.Podsiadły-Marczykowska.2014,23 A7.Jiménez-

Fig. 9 Data flow diagram of OntoRelα.
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Ruiz.2015,24 A8.Ho.2015,25 A9.Afzal.2016,26 A10.Ach-
pal.2016,27 A11.Mahmudi.201828 and A12.Guidoni.2020.29

The evaluated methods differ in several ways: the ontolo-
gy constructs considered during the conversion, the com-
pleteness of the generated relational model, and the
availability of tools that implement themethod. As expected,
all the methods convert a class into a relationwith a primary
key. Regarding axioms, complex ones are never considered
nor handled, which is a significant issue for biomedical
ontologies. Simple ones follow two dominant approaches:
they are converted into an attribute or into a relation.
Converting an axiom into an attribute may introduce several
issues, such as missing information (nulls) for zero-to-one or
zero-to-many relationships and data redundancy for many-
to-many relationships. Converting an axiom into a relation
may impact the query performance, but this is a better
approach to guarantee data integrity and structure exten-
sion, as performance can be handled at the physical level by
the RDB management systems using adequate indexing
structure.30 These axiom conversions and the inability to
deal with complex axioms reduce the structural uniformity
across all the relations in the data model and increase
semantic loss.

Moreover, the review outlined limitations in different
areas which may lead to semantic loss, including the lack
of conversion rules for object properties, property inheri-
tance axioms, cardinality restriction, property character-
istics, and annotation, as well as the inability to process
complex axioms (set of simple expressions linked with
logical operators) that are widely used in biomedical ontol-
ogies. Most methods store some important ontological con-
structs into metadata tables and do not derive explicit
structure or constraints from them. As a result, the axiom

verification will be incomplete or challenging to automate.
Thus, the main challenge is maintaining the richness of
ontological definitions in the resulting relational data model
by converting uniformly and consistently ontology con-
structs into relational constructs to detect the data that do
not conform to the axioms.

Finally, only two implementations are publicly available,
the first one is accessible through a web page,22 but the
source code is not available to be used and extended by
other researchers. The second works with ontology defined
using OntoUML based on UFO (Unified Foundational Ontol-
ogy)29 and allows defining ontologies using a graphical
interface. However, defining and maintaining large biomed-
ical ontologies using a graphical interface are not always
convenient. Therefore, a more generic method is needed to
benefit from the mature ontologies already in the OBO
Foundry.

Contribution and Future Work

This work aimed to address the problem of designing a
sharable and interoperable relational data model not only
to store data coming from heterogeneous systems but also to
store the associated semantic to support various applica-
tions. Themethod described in this article offers an advanced
conversion process to enable the automatic generation of the
uniform relational data model with constraints to maximize
semantic preservation and control data integrity. More
specifically, the presented method differs from the existing
ones by the following features:

• The axiom complexity reduction allows a concise and
uniform conversion.

Fig. 10 OntoRel with data as a graph.

Methods of Information in Medicine Vol. 61 No. S2/2022 © 2022. The Author(s).

Using an Ontology to Derive a Sharable and Interoperable Relational Data Model Khnaisser et al.e80



Fig. 11 OntoRel with data as a relation schema.
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• The normalization of the data model increases automa-
tion and uniformity.

• The generation of advanced constraints such as quantifi-
cation, intersection, and union using functions increases
data integrity control.

• The transformation of ontological annotations into SQL
comments and views provides documentation and multi-
ple access points within the data model.

• The configurable transformation of OWL types into SQL
types allows a uniform usage of OWL types.

• The generation of a mapping dictionary enables structure
reversibility and data extraction in various output
formats.

• The implementation, OntoRelα, can be used with various
OWL ontologies and PostgreSQL databases.

However, several limitations will require further work.
First, the relatively large size of the resulting relational data
model is a challenge, especially when trying to interact
manually with the model. As an example, to get all the
data related to a drug prescription, we need to build a query

Fig. 12 The ontology graph derived from a sample of physiological measurement ontology.

Fig. 13 The relational data model derived from a sample of physiological measurement ontology.
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with at least 16 joints (see ►Fig. 11). This limitation could
be alleviated by using navigation tools and query builder
applications fully leveraging this new approach to benefit
from the full semantic while helping the user find the
needed construct faster. Second, structural redundancy
in the data model is caused by redundant axioms. Ad-
vanced axiom redundancy reduction rules are already
under development to address this, yielding a smaller
RDB while fully preserving its semantic. Finally, more
conversion rules are being defined to improve the data
integrity and data ingestion, such as deriving secondary
keys, general constraints using property characteris-
tics,24,27 and generating data modification procedures27

to ensure data quality.

Conclusion

Many conversion methods from an ontology to a relational
data model have already been proposed. However, these
propositions suffer from limitations regarding the coverage
of ontological constructs, the handling of complex axioms,
and the accessibility of tools. This article presented conver-

sion rules and a freely available prototype named OntoRelα
that covers more ontological constructs and handles com-
plex axioms, and that can be used and extended by other
researchers. This work is a first step toward building a tool to
generate a sharable and interoperable database using ontol-
ogies. More development is underway to refine the derived
relational data model and provide complementary data
access tools.

Ethical Considerations
This research does not involve human subjects.

Conflict of Interest
None.

Acknowledgments
The authors would like to acknowledge the financial
support of Fonds de recherche du Québec - Nature et
technologie, Unite' de Soutien SRAP du Que'bec, and the
Health Data Research Network Canada. They also would
like to thank the development team ofGroupe de recherche
interdisciplinaire en informatique de la santé.

Table 1 Criterion application by method [fulfilled (X), not fulfilled (–), unknown(?)]a

A118 A219 A320 A421 A522 A623 A724 A825 A926 A1027 A1128 A1229 OntoRelα

Ontology

Ontology language ? ? ? ? X X X ? X X ? – X

Schema

Structure ? X – X X – X ? ? ? ? X X

Domains – – – – – – – – – – – – X

Primary keys X X X X X X X X X X ? X X

Secondary keys – ? – X ? ? X ? ? X ? – X

Foreign keys ? X X X X X X X X X X X X

Participation constraint ? ? – – – – X – – X ? ? X

General constraint ? ? X X ? X X X – X ? X –

Modification procedure – – – – – – – – – X ? – –

Target DBMS ? ? X ? ? X ? X X ? ? ? X

Process

Axiom reduction ? ? – ? ? – – ? ? ? – ? X

Intermediate structure – X – X – – ? X X ? ? X X

Type conversion ? ? – ? ? ? X X X ? ? ? X

Restriction conversion ? X – X – – X X X X ? ? X

Individual conversion X – – – X – X X – X X ? –

Annotation conversion – – – X X – – – – – ? – X

Structural reversibility X X – X – ? – X X ? – ? X

Tuple reversibility X X – X X ? X ? ? ? – ? –

Tool

Implementation X X X X – X X X X ? X X X

Availability – ? ? – X ? – ? ? ? ? X X

Total (X) 5 7 5 10 8 6 12 9 8 9 9 7 16

aExtended with permission from Khnaisser C, Lavoie L, Burgun A, Ethier JF. Generating relational database using ontology review: issues, challenges
and trends. Int J Adv Comput Sci Appl. 2018;9(6):139–145.
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Appendices

Appendix A

This section presents the 23 criteria defined to evaluate and compare the 12 most relevant papers against our method.

Criterion Application by Method
►Table 1 presents the comparison criteria applicable to each compared paper. A criterion is fulfilled by the method (X), not
fulfilled (–), or unknown (?). For example, for A1, the criterion “Ontology language” is unknown, “Domains” are not fulfilled,
and “Primary Keys” are fulfilled. Also, the count of fulfilled criteria is calculated for each method. OntoRelα fulfills 16 criteria
over 23. To address the remaining criteria, this article introduces an advanced analysis of the ontology (1) to extract property
characteristics and datatype constraints, (2) to generatemodification procedures for data that verify integrity constraints, and
(3) to implement the individual and tuple reversibility algorithm.

The evaluated papers: A1.Dou.2010,18 A2.Bellatreche.2010,19 A3.Saccol.2011,20 A4.Vyšniauskas.2012,21 A5.Hornung.2013,22

A6.Podsiadły-Marczykowska.2014,23 A7.Jiménez-Ruiz.2015,24 A8.Ho.2015,25 A9.Afzal.2016,26 A10.Achpal.2016,27 A11.Mah-
mudi.201828 and A12.Guidoni.202029.

Criteria Definition
Here is the list of criterion definitions used to compare each method:

• Ontology
– Ontology language—the ontology language supported by the method: OWL-DL, OWL-QL, OWL-RL, OWL- EL, RDF(S),

DAML, etc.

• Schema
– Structure—the relational schema normal form: 3NF, BCNF, 5NF, or 6NF. This criterion can be deduced from the conversion

rules.
–Domains—does themethod convert the ontology data types and their constraints into domains (e.g., CREATE DOMAIN in

PostgreSQL)?
– Primary keys—does the method generate [G] or calculate [C] the primary keys?
– Secondary keys—does the method generate the secondary key from the set of axioms?
– Foreign keys—does the method convert the appropriate axioms into foreign keys?
– Participation constraints—does the method convert cardinalities into constraints?
– General constraints—does the method convert datatype and disjoint constraints into general constraints?
– Modification procedures—does the method define the procedures for modifying the data (insert, delete, and update

triggers)?
– Target RDBMS—such as PostgreSQL, MySQL, Oracle, MSSQL, etc.

• Process
– Axiom reduction—does the conversion process deal with complex axioms?
– Intermediate structure—the intermediate data structure used to convert OWL into a relational schema: MOF (Meta-

Object Facility), FOL (First-order logic), RDF, Jena model, etc.
– Type conversion—does the conversion process specify or configure the conversion rules between ontology types and SQL

types?
– Restriction conversion—does the conversion process convert the restrictions to general constraints?
– Annotation conversion—does the conversion process convert the annotations to document the relational schema?
– Structural reversibility—does the conversion process make it possible to refer to the ontology construct? Furthermore,

does the method describe the algorithm and propose an implementation of structural reversibility?
– Tuple reversibility—does the conversion processmake it possible to import tuples stored in the DB in their full ontological

expression? Furthermore, does the method describe the algorithm and propose an implementation of tuple
reversibility?

• Tool
– Implementation—has the method been implemented?
– Availability—is the tool publicly available?
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Appendix B

Each expression in an axiom is syntactically analyzed using the abstract grammar and reduced recursively according to
reduction rules until a set of simple axioms is reached.

axiom::¼ domain operator range
domain::¼ expression
range::¼ expression
expression::¼ ID
| expression (’t’ | ’u’) expression
| property
property::¼ ’(’ operator expression ’)’
operator::¼ ’v’ | propertyOperator | qt
propertyOperator::¼ ID
qt::¼ ’[’ N ’..’ N ’]’
N::¼ /� positive or null integer �/
ID::¼ /� an identifier (e.g., IRI)�/

The reduction is achieved through the function Ф with three components: Ф1, Ф2, and Ф3. All the components take as an
input an axiom.

• Ф1 returns the class representing the concept (it can be the same class or a class not defined in the original ontology).
• Ф2 returns a set of constraints that must be guaranteed to preserve the semantic validity.
• Ф3 returns a set of new reduced axioms produced by Ö that replaces the input axiom.

The reduction function Ф is defined by recursion regarding the four types of expressions of an axiom as follows:

where

• A is an ID of a class.
• Z' is the ID new generated new class.
• β and γ are expressions as defined in the grammar.

Therefore, the reduction produces a set of new classes, axioms, and constraints calculated by Ф. The new axioms are all
derivable by the grammar and have the following final simple form {axiom::¼ ID operator ID}.
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Appendix C

The example in ► Figure 12 shows a sample of physiological measurement ontology, the human body mass. The code below
presents some ontological constructs in a simplified syntax, and the figures below,► Figure 12 and► Figure 13, illustrate the
generated relational data model as a graph and as a relation schema respectively. The complete example can be found on
GitHub: https://github.com/OpenLHS/OntoRela.
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