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ABSTRACT

Background Therapeutics that specifically address biological

processes often require a much finer selection of patients and

subclassification of diseases. Thus, diagnostic procedures must

describe the diseases in sufficient detail to allow selection of

appropriate therapy and to sensitively track therapy response.

Anatomical features are often not sufficient for this purpose

and there is a need to image molecular and pathophysiological

processes.

Method Two imaging strategies can be pursued: molecular

imaging attempts to image a few biomarkers that play key

roles in pathological processes. Alternatively, patterns

describing a biological process can be identified from the

synopsis of multiple (non-specific) imaging markers, possibly

in combination with omics and other clinical findings. Here,

AI-based methods are increasingly being used.

Results Both strategies of evidence-based therapy manage-

ment are explained in this review article and examples and

clinical successes are presented. In this context, reviews of

clinically approved molecular diagnostics and decision sup-

port systems are listed. Furthermore, since reliable, repre-

sentative, and sufficiently large datasets are further important

prerequisites for AI-assisted multiparametric analyses, con-

cepts are presented to make data available in a structured

way, e. g., using Generative Adversarial Networks to comple-

ment databases with virtual cases and to build completely

anonymous reference databases.

Conclusion Molecular imaging and computer-assisted cluster

analysis of diagnostic data are complementary methods to

describe pathophysiological processes. Both methods have

the potential to improve (evidence-based) the future manage-

ment of therapies, partly on their own but also in combined

approaches.

Key Points:
▪ Molecular imaging and radiomics provide valuable comple-

mentary disease biomarkers.

▪ Data-driven, model-based, and hybrid model-based inte-

grated diagnostics advance precision medicine.

▪ Synthetic data generation may become essential in the

development process of future AI methods.

Citation Format
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ZUSAMMENFASSUNG

Hintergrund Therapeutika, die spezifisch biologische

Prozesse adressieren, erfordern oft eine wesentlich feinere

Auswahl von Patienten und Subklassifizierung der Erkrankun-

gen. Diagnostische Verfahren müssen die Erkrankungen da-

her in ausreichender Detailtiefe beschreiben, um die Auswahl

der geeigneten Therapie zu ermöglichen und das Ansprechen

auf die Therapie sensitiv verfolgen zu können. Anatomische

Merkmale sind hierfür oftmals nicht ausreichend. Die Abbil-

dung molekularer und pathophysiologischer Prozesse ist

daher notwendig.

Methode Man kann 2 Strategien bei der Bildgebung verfol-

gen: Molekulare Bildgebung versucht wenige Biomarker dar-

zustellen, die Schlüsselfunktionen in pathologischen Prozessen

einnehmen. Alternativ kann man aus der Zusammenschau

multipler (unspezifischer) Bildgebungs- und Omics-Marker

sowie anderer klinischer Auffälligkeiten Muster erkennen, die
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biologische Prozesse beschreiben. Hierbei werden zunehmend

AI-unterstützte Verfahren eingesetzt.

Ergebnisse Beide Strategien der evidenzbasierten Therapie-

steuerung werden in dem Übersichtsartikel erläutert und

Beispiele sowie klinische Erfolge aufgeführt. Es werden Über-

sichten zu klinisch zugelassenen molekularen Diagnostika und

Entscheidungsunterstützungssystemen gegeben. Da zuver-

lässige, repräsentative und ausreichend große Datensätze

weitere wichtige Voraussetzungen für AI-unterstützte, multi-

parametrische Analysen sind, werden ferner Konzepte präsen-

tiert, um Daten strukturiert verfügbar zu machen, z. B. mittels

Generative Adversarial Networks Datenbanken mit virtuellen

Fällen zu ergänzen, bzw. vollständig anonyme Referenzdaten-

banken aufzubauen.

Schlussfolgerung Die molekulare Bildgebung und die compu-

terunterstützte Clusteranalyse von multiplen diagnostischen

Daten sind komplementäre Verfahren, um pathophysiologische

Prozesse zu beschreiben. Beide Verfahren haben das Potenzial,

teilweise eigenständig aber auch in kombinierten Ansätzen die

zukünftige Steuerung von Therapien evidenzbasiert zu verbes-

sern.

Kernaussagen:
1. Molekulare Bildgebung und Radiomics liefern wertvolle

ergänzende Krankheits-Biomarker.

2. Datengesteuerte, modellbasierte und hybride modellba-

sierte integrierte Diagnostik fördert die Präzisionsmedizin.

3. Die synthetische Datengenerierung spielt im Entwicklung-

sprozess zukünftiger KI-Methoden eine wichtige Rolle.

Introduction

Evidence-based medicine is defined as “the conscientious, explicit,
judicious, and reasonable use of modern, best evidence in making
decisions about the care of individual patients” [1]. It was intro-
duced to educate physicians about standardized, science-guided,
traceable but dynamically evolving patient care [2]. It comes close
to the definition of “precision medicine”, where patient cohorts are
subclassified according to their disease characteristics but do not
automatically require personalization of treatment, the latter being
difficult to realize in clinical practice.

Therapeutics targeting very specific molecular characteristics of
diseases are an integral element of evidence-based medicine. How-
ever, increasing specificity of therapeutics also requires higher
granularity in patient selection, resulting in an increasing demand
for diagnostic tools that provide information beyond morphology.
In detail, the diagnostic method should provide information that
directly or indirectly describes the pathophysiology, the therapeutic
target, or the dominant response mechanism to the therapeutic
drug.

There are two main strategies as to how this can be achieved
by imaging: First, one can try to identify one or a few key features
of the pathology or the mechanism of action of the drug and
visualize them with specific diagnostic probes (▶ Fig. 1A). About
20 years ago, this led to the rise of molecular imaging, facilitated
by the increasing availability of high-sensitivity imaging modal-
ities such as PET, SPECT, and optical imaging, as well as advances
in probe development [3, 4]. Although the proof of concept was
frequently provided, only a few molecular imaging probes finally
entered clinical practice. This can be attributed to many reasons,
such as high costs, low revenues for probes applied in small pa-
tient subpopulations, lack of superiority over established imaging
methods, and competition with in vitro omics analyses.

At the same time, triggered by the improvements in data storage,
processing, and image analysis, a new field of research emerged,
which is called radiomics [5, 6]. In principle, the intention of radio-
mics is very similar to molecular imaging but the approach is differ-
ent. Here, multiple features are evaluated from – mostly – routine
clinical images, and cluster analysis is performed using classical

machine learning or advanced artificial imaging (AI) tools
(▶ Fig. 1B). The resulting feature panels or pattern can be indicative
for the pathological process, although the pathophysiological mean-
ing of the individual feature is often not known.

This article discusses the complementarity and competitive-
ness of both approaches and predicts a picture of future evi-
dence-based therapy management. It also highlights the disease-
dependent challenges on the engineering of future imaging
devices, probes, analysis algorithms, and databases.

Is molecular imaging still important?

The popularity of scientific fields typically shows a waveform that
follows the so-called Gartner Hype Cycle [7]. Initially, there are
many new ideas, and expectations are high. Furthermore, scientists
tend to oversell their findings and present unrealistic translational
perspectives to acquire grant money and further their careers and
the field. Following initial disappointment, the community tends to
doubt the value of the field and its popularity decreases. However,
some robust and meaningful approaches typically survive leading
to a maturation of the field, and often a re-increase in popularity is
observed when translational successes can be reported.

Furthermore, in molecular imaging, many translational successes
are not classified as molecular imaging and thus are not recognized
as such. However, there is no doubt that molecular imaging already
plays a crucial role in evidence-based therapy control and that it will
even become more important in the future [8]. ▶ Table1 provides
an overview of clinically approved molecular imaging agents. Cer-
tainly, the greatest successes were achieved in the field of nuclear
medicine, i. e., PET and SPECT, due to their high sensitivity to probes
and the ability for clinical translation. Additionally, it is noteworthy
that also in MRI for liver imaging a molecularly targeted probe
(Gd-EOB DTPA) is meanwhile the clinical standard [9]. Translational
successes were also obtained in ultrasound where a first angiogen-
esis-targeted probe is currently under clinical investigation [10].
Nevertheless, molecular imaging applications are always competing
with other imaging approaches and need to prove their superiority
and added value with respect to therapy management. Intense dis-
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▶ Fig. 1 Routes to realize evidence-based therapy management by either molecular imaging A or radiomic/multi-omic strategies B. A: The molecular
imaging approach starts with intense research on a molecular biomarker that is accessible to drugs and highly specific for the related medical issue.
Then, a binding ligand is developed that can either be used diagnostically or therapeutically. Here, the diagnostic agent can be used as a companion
diagnostic agent to stratify treatment with the therapeutic one. Alternatively, both diagnostic and therapeutic properties can also be realized in the
same molecule, resulting in a theranostic agent. B: The alternative approach is to use data derived from multiple diagnostic interventions to perform
clustered analyses and to derive patterns that support therapy management. For this purpose, quantitative features need to be extracted from
histopathological, radiological/nuclear medicine image data. Machine and deep learning are used to analyze the features together with the other data
and to generate algorithms that can be applied for decision support. However, as these algorithms do not indicate causalities, their careful validation
is highly important. Much research is currently spent on making them explainable, linking the results to disease pathophysiology, and using them to
build digital disease models.
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cussions with clinicians are required to identify the ideal applica-
tions. In this context, imaging of chronic kidney disease (CKD) using
the elastin-targeted MRI agent ESMA, which was originally intro-
duced by Rene Botnar and co-workers to assess arteriosclerosis

[11], is a good example [12]: No imaging method or serum analysis
can reliably distinguish between kidney regeneration and chronifica-
tion of the disease after an acute event. Thus, many patients remain
untreated in the early but still treatable stage of disease. Using

▶ Table 1 Overview of clinically approved molecular imaging agents, their targets, and indications (*academic approval only at a few facilities).

Probe Target Indication Status

Positron Emission Tomography (PET)

11C Choline Choline kinase (Enzyme) Suspected prostate cancer recurrence with elevated blood
levels of prostate-specific antigen (PSA); differential diagnosis
of brain tumors, lung cancer, esophageal cancer

FDA*

64Cu Dotatate, 64Cu oxodotreotide Somatostatin receptors Somatostatin receptor positive neuroendocrine tumors FDA

18F Florbetaben Amyloid beta Alzheimerʼs disease and other cognitive impairments FDA

18F Florbetapir Amyloid beta Alzheimerʼs disease and other cognitive impairments FDA

18F Flortaucipir/AV1451 Aggregated Tau protein
(neurofibrillary tangles; NFT)

Alzheimerʼs disease FDA

18F Fluciclovine Enters cells through energy-indepen-
dent L-type amino acid transporter
system (LAT) and is metabolized since
it is an AA analogue

Prostate cancer diagnosis based on elevated PSA levels FDA

18F Piflufolastat Prostate-specific membrane antigen
(PSMA)

Suspected metastasis and recurrence of prostate cancer FDA

18F FDG Fluorodeoxyglucose Glucose metabolism Oncology: Hodgkin’s, non-Hodgkin lymphoma, colorectal
cancer, melanoma, lung cancer, head and neck tumors, laryngeal
cancer, esophageal cancer, cervical cancer, breast cancer,
malignant ovarian cancer, chronic lymphocytic leukemia.
Assessing myocardial hibernation.
Identification of foci of epileptic seizures in the brain

FDA

18F Fluoroestradiol Estrogen receptor (ER) Recurrent or metastatic breast cancer FDA

18F Flutemetamol Amyloid beta Alzheimer‘s disease and other cognitive impairments FDA

68Ga Dotatate Somatostatin receptors Neuroendocrine tumors FDA

68Ga Dotatoc Somatostatin receptors Neuroendocrine tumors FDA

68Ga PSMA-11 PSMA Prostate cancer recurrence and metastasis FDA*

89Zr Panitumumab Epidermal growth factor receptor
EGFR

Colorectal cancer IND

Single Photon Emission Tomography (SPECT)

123I Ioflupane Presynaptic dopamine transporters
(DAT)

Suspected Parkinson’s syndromes. Differentiation between
Parkinson’s and other tremor causes

FDA

Magnetic Resonance Imaging (MRI)

Gadoxetic acid, Gd-EOB-DTPA OATP receptors Liver imaging FDA

Ultrasound

BR55 VEGFR2 Imaging of tumor angiogenesis (prostate, breast, ovarian
cancers)

IND

Optical Invivo Imaging
(only dyes approved; reported are examples for clinical studies using the dyes as imaging tag)

FITC (Fluorescein isothiocyanate) Folate receptor
TNF-alpha

Interoperative ovarian and breast cancer imaging. Rheumatic
diseases (e. g., psoriasis)

FDA

IRDye 800CW EGFR
VEGF

Intraoperative imaging of pancreatic and lung cancer. Imaging of
tumor angiogenesis (e. g., in colon carcinomas/adenomas)

FDA

Scintigraphy

111 In Pentetreotide Somatostatin receptors Primary and metastatic neuroendocrine tumors FDA
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various preclinical models, molecular imaging of elastin was demon-
strated to provide this decisive information about CKD chronifica-
tion [12] and thus, molecular imaging of the extracellular matrix
may address an urgent medical need. Theranostics is another field
where molecular imaging meets evidence-based therapy control.
In particular, in the field of antibody-based therapeutics, multiple
clinical theranostic studies are ongoing that have been summarized
by Moek et al. [13]. Currently, most clinically applied theranostic
agents are radiopharmaceuticals that can be equipped with diag-
nostic and therapeutic radioisotopes [14]. Depending on the radio-
isotope they can then be used for patient selection, therapy
monitoring, and therapy. Alternatively, therapy control can be per-
formed with companion diagnostic agents. These agents are able
to predict or monitor the success of one or a group of pharmaceuti-
cals. For example, Ramananthan and co-workers used superpara-
magnetic iron oxide nanoparticles (SPION) to predict the “enhanced
permeability and retention” (EPR)-based accumulation of nano-
medicines in tumors and showed that high SPION accumulation
correlated with therapy response [15]. Despite this promising result,
however, the clinical success of the approach will depend on wheth-
er the same information can be obtained from standard contrast-
enhanced MRI scans, radiomics, or histological analyses.

Why is radiomics suddenly emerging?

Feature-based image analysis has been around for decades. Further-
more, most machine learning algorithms as well as convolutional
neural networks (CNN) that are applied in radiomics were developed
a long time ago. Major reasons for the rise of radiomics are digitali-
zation in medicine, the higher quality of images, the systematic col-
lection of image data, and the increasing awareness that a single
imaging biomarker often sufficiently describes disease processes
(▶ Table2). Furthermore, budgetary pressure in the health systems
promotes maximum exploitation of currently applied imaging
methods over the costly development of new imaging modalities
and probes. Finally, clinical decision making becomes increasingly
complex and demands the integrated evaluation of various diagnos-
tic features deriving from different disciplines [16]. As humans can

simultaneously consider only a handful of parameters, computer-ai-
ded decision support is in high demand.

The authors distinguish three major approaches for how
computer-aided decision support can be realized (▶ Fig. 2):

1. Data-driven: This is the classical radiomics approach where
multiple features are extracted from the images, clustered,
ranked and correlated with disease or therapy response character-
istics. As these image features can be handled as any other diag-
nostic data, integrated analysis with clinical findings and param-
eters from blood and urine can be realized [17]. This approach is
suited to build decision trees and to detect dependencies
between parameters but hardly provides causalities.

Furthermore, it is noteworthy that not every data analysis
approach fits for every data collection and CNN. While CNNs
enable unsupervised learning and, thus, the identification of novel
classifications within a patient population, they depend on consid-
erably large data collectives and represent a black box. To identify
decision hierarchies in smaller data collections, classical machine
learning approaches are often preferable. In this context, gradient
tree boosting (GTB) appears particularly attractive, as decisions
are fully retrievable and it even works with incomplete and consid-
erably heterogeneous data [18]. GTB belongs to the class of
supervised learning methods and is based on the combination of
a set of decision trees. Here, boosting relies on an iterative
approach where more decision trees are added to improve the
prediction of the GTB. GTB has recently been applied in several
areas, such as computer-aided diagnosis of lung nodules [19]
and real-time reconstruction of the location of the gamma-crystal
interaction of PET detectors [20].

2. Model-based: The aim of this approach is to display the
pathological process in a mathematical model [21], ideally result-
ing in a “digital twin”. The advantage over the data-driven
approach is its mechanistic nature. As it provides causalities,
drug responses can be simulated, and even new treatments can
be tested in silico. The integration of imaging into the models
can be used to identify biomarkers predicting ideal patient
cohorts or indicating therapy response. However, a precondition
for these model-based approaches (also known as “systems
medicine”) is profound knowledge of the pathophysiological

▶ Table 2 Examples of commercially approved image analysis tools.

Company name Application Approved Webpage

Arterys Cardio, lung, liver, breast FDA https://www.arterys.com/

GE Health Edison Breast FDA https://www.gehealthcare.com/products/edison

Hermes Medical Solutions Onco, neuro, cardio, pulmonary, FDA https://www.hermesmedicalsolutions.com/

Intrasense Myrian Cardio, neuro, breast FDA https://www.intrasense.fr/

MeVis Medical Solutions AG Breast, lung, neuro, prostate,
bowel, liver

EN ISO, FDA https://www.mevis.de/

Oncoradiomics SA – RadiomiX Onco EN ISO https://radiomics.bio

Philips Healthcare – IntelliSpace Portal Cardio, onco, neuro, pulmonary FDA https://www.philips.com/

Siemens Healthineers Cardio, onco, neuro, breast,
pulmonary

FDA https://www.siemens-healthineers.com/
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regulations and their direct impact on the images. As this is often
not sufficiently given, the process often fails, although it reflects
the most ideal solution. Particularly in biology, many pathophysio-

logical processes are not tightly regulated and are influenced by
multiple co-factors, many of which are even unknown. In con-
trast, the use of model-based approaches for image acquisition,
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▶ Fig. 2 Three main approaches to how computer-aided decision support can be realized A. Data-driven approaches rely on extracting features
from input data (e. g., imaging features in the case of radiomics), while model-based approaches use the data as input to an analytical (causal)
model or to train a machine learning model, resulting in the targeted biomarker vector. Hybrid approaches are about to combine these two ap-
proaches by getting the best of both approaches. Different architectures for analyzing and storing data and methods B with their advantages (+)
and disadvantages (–). Data augmentation using Generative Adversarial Networks (GANs) to generate arbitrary syntactic data from a learned data
distribution C. The shown synthetic images were generated using the GAN from [37]. The left part shows the basic architecture of a GAN, which
consists of a generative model that generates the synthetic (fake or synthetic) data, while the discriminator is trained to distinguish fake from real
data. Both networks are trained in a concurrent manner. Further details can be found in [37].

733Kiessling F et al. Perspectives of Evidence-Based… Fortschr Röntgenstr 2022; 194: 728–736 | © 2022. Thieme. All rights reserved.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



data reconstruction and analysis is very widespread. For example,
a very successful class of model-based image reconstruction
methods is using the theory of compressed sensing (CS) [22–24].
In CS, the regularization model is based on the assumption that
the image information is sparse in certain regions. Lustig et al.
presented several applications of CS with a particular focus on ra-
pid MRI imaging [22]. Furthermore, model-based iterative image
reconstruction is very often used in the field of CT, PET, and SPECT
image reconstruction, in which physical models of the scanners
are being used [25, 26]. Salomon et al. used a scanner model and
the singles and coincidence data to achieve relative scanner
normalization [27]. Furthermore, 4D lung or heart motion models
of the patient for motion-compensated reconstruction are also
very common [25].

Another area in which model-based methods are intensively
used is the entire domain of super-resolution image reconstruc-
tion. Here, super-resolution ultrasound is an excellent example of
model-based data reconstruction [28]. For example, in “motion
model ultrasound localization microscopy”, a Markov Chain
Monte Carlo Data Association Algorithms is applied to assess –
based on the enhancement of voxels – the probability of motion
of a microbubble within an ultrasound image over time. The
resulting tracks can be visualized in much higher resolution than
provided by the ultrasound transducer. Furthermore, blood velo-
cities and flow direction can be assessed in individual microvessels
and relative blood volume determined without the need for com-
plex pharmacological models [29]. The multiple parameters de-
rived from such super-resolution techniques can then be fed into
data-driven or model-based analyses to improve disease charac-
terization and more sensitively assess therapy responses.

Another example of model-based data analysis was provided by
Gremse and coworkers [30]. Here, it was the aim to automatically
detect arterial stenosis on CT and MR angiography datasets. The
approach included a 3D reconstruction of the vasculature. Then, a
virtual ball was sent through the vessels that adapted its size to the
vessel lumen. If the size of the ball decreases, there is usually a
bifurcation. However, if it decreases and subsequently re-increases
there is usually a stenosis. The suspicious areas can then automati-
cally be indicated to the physician for further assessment.

3. Hybrid modeling: Hybrid modeling is currently hardly used
in imaging. However, it is the logical next step considering the
strengths and weaknesses of the two approaches mentioned
above [31, 32]. The basis is a mathematical (disease) model,
which can be simple but should be able to iteratively grow. The
model is additionally fed by algorithms provided by a data-driven
approach, e. g., a CNN. Thus, the “descriptive” data and correla-
tive findings are continuously transferred into causalities and,
thus, become more and more explainable [33, 34]. An appealing
overview of strategies and methods to reveal hybrid models
across resolution scales and different data types has been pres-
ented by Herrgårdh and coworkers with a focus on stroke care
[32]. However, the strategies that are presented and discussed
could easily be adopted to other disease areas.

What are the current and future data storage
and sharing architectures?

For the future development of evidence-based therapy manage-
ment, the architecture of data processing and data storage is a
crucial factor. Here, the authors distinguish three processing
architectures (▶ Fig. 2B):
1. Cloud computing is an architecture that provides on-demand
availability of computing power and storage resources, without
active management by the user [35]. The core idea of cloud com-
puting is resource sharing, typically used as a “pay-as-you-go”
model. Through the shared use of computing and storage resour-
ces, cloud computing is one of the most flexible solutions. One
disadvantage is that the patient data to be processed must be
transferred to the cloud and thus data security and data protec-
tion must be guaranteed.
2. A Data Warehouse is a system used for reporting and data
analysis. These systems are centralized repositories for integrated
data from one or more different sources [36]. The types of data to
be stored (images, omics, etc.) are ordered and integrated in a
clearer way. The disadvantage is that on the one hand the patient
data is copied into the data warehouse, and on the other hand
these solutions are typically not offered across company boundar-
ies, which can limit their adoption in the medical field.
3. Distributed analytics is an architecture in which algorithms,
rather than data, are shared [37]. This avoids the sharing of sensi-
tive patient data. Thus, this last architecture is already suitable for
multi-center studies. A necessary prerequisite for distributed ana-
lytics is that the data has to be available in a standardized form.
Since the algorithm and not the data is shared, the intellectual
property is usually shared as well, which requires a cultural
change.

For the two first architectures, Cloud Computing and Data
Warehousing, the handling of patient-related data is very critical.
In addition, training future AI methods will require far more data
than are easily available. Therefore, the generation of synthetic
data has recently established itself as a new field of research. A
very promising approach is to use the aforementioned GANs
[38], which can generate an infinite amount of synthetic data or
images that closely resemble real data from a learned data distri-
bution (▶ Fig. 2C).

Conclusion

As the information content of medical images is currently not fully
exploited in diagnostic ratings, radiomics provides an important
chance to improve diagnostic accuracy, and to elucidate new
imaging biomarkers that can be used for evidence-based therapy
management. It may also support the cross-disciplinary and
integrated use of various diagnostic data. However, this does not
mean that radiomics will replace molecular imaging and theranos-
tics. This is particularly true for the latter where only the “diagnos-
tic aspect” can be replaced. In addition, as theranostic drugs pro-
vide direct feedback on drug accumulation and performance,
other diagnostic methods may not be able to provide higher diag-
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nostic accuracy, but rather may complement the diagnostic infor-
mation.

Furthermore, important features of the disease or information
about therapeutic targets may often not be available from routine
images. These information deficits need to be determined and
molecular imaging probes need to be developed to fill these
gaps. Then, molecular imaging data may become part of the
radiomic analysis, leading to a merge of both approaches. Fur-
thermore, radiomics, which currently provides patterns and corre-
lations rather than causalities, needs to evolve, which may effec-
tively work via hybrid modeling, finally aiming at the generation of
digital twins [31]. The latter could then be used to develop and
refine personalized treatment schemes in silico with a much lower
risk of failure. However, to reach these goals, new concepts for
data sharing need to be developed, and there must be an open-
ness to collaborative data use. Furthermore, for evidence therapy
management, engineering of devices, probes, image analysis, and
data storage should be tightly coordinated on each other and
focused on the particular application.

Thus, in summary the following take home messages can be
formulated:
▪ Molecular imaging and radiomics are both providing valuable

disease biomarkers that potentially complement each other.
▪ Integrated diagnostics based on data-driven, model-based,

and hybrid modeling approaches will allow pathophysiological
conclusions with high precision.

▪ Disease-tailored refinements of devices, molecular probes,
image analysis methods and databases are prerequisites for
future evidence-based therapy management.
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