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ABSTRACT

Purpose Evaluation of machine learning-based fully automated

artery-specific coronary artery calcium (CAC) scoring software,

using semi-automated software as a reference.

Methods A total of 505 patients underwent non-contrast-

enhanced calcium scoring computed tomography (CSCT). Au-

tomated, machine learning-based software quantified the

Agatston score (AS), volume score (VS), and mass score (MS)

of each coronary artery [right coronary artery (RCA), left main

(LM), circumflex (CX) and left anterior descending (LAD)].

Identified CAC of readers who annotated the data with semi-

automated software served as a reference standard. Statistics

included comparisons of evaluation time, agreement of iden-

tified CAC, and comparisons of the AS, VS, and MS of the

reference standard and the fully automated algorithm.

Results The machine learning-based software correlated

strongly with the reference standard for the AS, VS, and MS

(Spearmanʼs rho > 0.969) (p < 0.001), with excellent agreement

(ICC > 0.919) (p < 0.001). The mean assessment time of the re-

ference standard was 59 seconds (IQR 39–140) and that of the

automated algorithm was 5.9 seconds (IQR 3.9–16)

(p < 0.001). The Bland-Altman plots mean difference and 1.96

upper and lower limits of agreement for all arteries combined

were: AS 0.996 (1.33 to 0.74), VS 0.995 (1.40 to 0.71), and MS

0.995 (1.35 to 0.74). The mean bias was minimal: 0.964–

1.0429. Risk class assignment showed high accuracy for the

AS in total (weighed κ = 0.99) and for each individual artery

(κ = 0.96–0.99) with corresponding correct risk group assign-

ment in 497 of 505 patients (98.4%).

Conclusion The fully automated artery-specific coronary

calcium scoring algorithm is a time-saving procedure and

shows excellent correlation and agreement compared with

the clinically established semi-automated approach.

Key points:
▪ Very high correlation and agreement between fully auto-

matic and semi-automatic calcium scoring software.

▪ Less time-consuming than conventional semi-automatic

methods.

▪ Excellent tool for artery-specific calcium scoring in a clinical

setting.

Citation Format
▪ Winkelmann MT, Jacoby J, Schwemmer C et al. Fully Auto-

mated Artery-Specific Calcium Scoring Based on Machine

Learning in Low-Dose Computed Tomography Screening.
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ZUSAMMENFASSUNG

Ziel Evaluierung einer auf maschinellem Lernen basierenden

vollautomatischen arterienspezifischen Software zur Bewer-

Technical Innovations
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tung des Koronarkalkes (CAC), unter Verwendung einer hal-

bautomatischen Software als Referenz.

Methoden Bei insgesamt 505 Patienten wurde eine nicht

kontrastverstärkte Calcium-Scoring-Computertomografie

(CSCT) durchgeführt. Eine automatisierte, auf Machine Learn-

ing basierende Software quantifizierte den Agatston-Score

(AS), Volumen-Score (VS) und Massen-Score (MS) jeder Koro-

nararterie (rechte Koronararterie [RCA], linke Koronararterie

[LM], Ramus circumflexus [CX] und Ramus interventricularis

anterior [LAD]). Ermittelte CAC der Reader, die die Daten mit

einer halbautomatischen Software annotierten, dienten als

Referenzstandard. Die Statistik umfasste Vergleiche der Aus-

wertungszeit, Übereinstimmung der identifizierten CAC so-

wie Vergleiche von AS, VS und MS des Referenzstandards

und vollautomatischen Algorithmus.

Ergebnisse Die auf maschinellem Lernen basierende Software

korrelierte stark mit dem Referenzstandard für AS, VS und MS

(Spearmanʼs rho > 0,969) (p < 0,001), mit hervorragender

Übereinstimmung (ICC > 0,919) (p < 0,001). Die mittlere Be-

wertungszeit des Referenzstandards betrug 59 s (IQR 39–140)

und die des automatischen Algorithmus 5,9 s (IQR 3,9–16)

(p < 0,001). Die mittlere Differenz der Bland-Altman-Plots und

die bei 1.96 × Standardabweichung definierten oberen und un-

teren Grenzen der Übereinstimmung für alle Arterien zusam-

men betrugen: AS 0,996 (1,33 bis 0,74), VS 0,995 (1,40 bis

0,71), und MS 0,995 (1,35 bis 0,74). Der mittlere Bias war mini-

mal: 0,964–1,0429. Die Risikoklassenzuordnung zeigte eine

hohe Genauigkeit für den AS in Summe (gewichtetes κ = 0,99)
und für jede Arterie (κ = 0,96–0,99) mit entsprechender korrek-

ter Risikogruppenzuordnung bei 497 von 505 Patienten

(98,4 %).

Schlussfolgerung Der vollautomatische arterienspezifische

Koronarkalk-Scoring-Algorithmus ist ein zeitsparendes Ver-

fahren und zeigt eine hervorragende Korrelation und Überein-

stimmung mit dem klinisch etablierten halbautomatischen

Ansatz.

Kernaussagen:
▪ Sehr hohe Korrelation und Übereinstimmung zwischen

vollautomatischer und halbautomatischer Kalziumbewer-

tungssoftware.

▪ Weniger zeitaufwendig als herkömmliche halbautomatische

Verfahren.

▪ Hervorragendes Instrument zur arterienspezifischen Kal-

ziumbestimmung im klinischen Alltag.

Introduction

Coronary artery disease (CAD) is the leading cause of death world-
wide [1–3]. Given the burden of CADon patients and the health
care system, early detection of the disease and prediction of the
individual risk of developing cardiovascular events are crucial. Sys-
tematic research in this area has led to further developments in
treatment and patient care and the possibility of individual risk
assessment, which helps to optimize treatment and patient care
[4, 5]. The current clinical guidelines in the US and Europe recom-
mend calcium scoring computed tomography (CSCT) in selected
asymptomatic individuals, typically at low to intermediate risk of
CAD [6, 7].

Non-contrast-enhanced, ECG-triggered CSCT is performed at a
low radiation dose and can determine the cardiovascular risk for
each patient, using the well-established metrics Agatston score
(AS), volume score (VS), and mass score (MS) [8]. The AS calcu-
lates calcium burden by multiplying the area of the lesion above
a 130 HU threshold and VS is defined as the total number of voxels
exceeding the threshold of 130 HU for the respective calcium re-
gion [8, 9]. Whereas VS and AS are intended as indirect indicators
of coronary artery calcification (CAC), MS provides an actual
quantitative measure and assesses the true mass of CAC [8].

Typically, radiologists use semi-automated software for evalua-
tion, including manual detection and marking of coronary artery
calcifications [10], supported by threshold-based, automated
region-growing algorithms. Up to now, measurement of CAC
requires manual input by a human operator to identify and assign
calcified coronary lesions to the left main artery (LM), left anterior

descending artery (LAD), circumflex artery (CX), or right coronary
(RCA) artery [11, 12].

Due to the worldwide use of CSCT, there is a need to further
improve and automize the examination and post-processing
workflow [13]. In recent years, developments in machine learning
have led to improvements in automated systems for CSCT
[10, 13–15]. With regard to determining the total calcium load
of all coronary arteries, some studies have already shown promis-
ing results [10, 14]. Data regarding the performance of machine
learning-based algorithms for the detection of CAC with identifi-
cation of the particular coronary artery are limited. However,
knowledge of the calcium load of each individual coronary vessel
could have an impact on cardiovascular risk management. In fact,
CAC of the LM and LADwas associated with increased mortality
risk and CAC of the right coronary artery with decreased mortality
risk [16, 17].

The aim of this retrospective single-center study was to evaluate
novel machine learning-based software for fully automated calcium
scoring with identification and evaluation of each coronary artery in
non-contrast cardiac CT, as compared to a semi-automated post-
processing tool serving as the standard of reference.

Materials & Method

The local institutional review board approved this retrospective
analysis of patient data. In this retrospective single-center study,
patients and their baseline characteristics were retrospectively col-
lected from the institutional database. A total of 505 patients with
CSCT performed on a state-of-the-art CT scanner (SOMATOM Defi-
nition Flash or SOMATOM Force; Siemens Healthineers, Erlangen,
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Germany) between January 2013 and July 2020 were included. The
exclusion criteria were cardiac CT without non-contrast-enhanced
ECG-triggered calcium scoring datasets, pediatric cardiac CT data-
sets, and patients with intracoronary stents (▶ Fig. 1).

Imaging protocol

All CSCT scans were performed on a state-of-the-art multidetector
CT scanner (SOMATOM Definition Flash or SOMATOM Force; Sie-
mens Healthineers, Erlangen, Germany). All images were acquired
with automatic tube current modulation (CARE Dose 4D), auto-
matic kV modulation (CARE kV), and a reference mAs of 60 and a
reference kV of 120. For SOMATOM Force, the gantry rotation time
was 0.25 s, the pitch was 3.2, and the collimation was
0.6 × 192mm. Reconstructions were computed with Sa36 kernel, a
slice thickness of 3.0mm, and an increment 1.5mm. For SOMA-
TOM Definition Flash, the gantry rotation time was 0.28 s, the pitch
was 3.4, and the collimation was 0.6 × 128mm. Reconstructions
were made with B35 f\. kernel, a slice thickness of 3.0mm, and an
increment of 1.5mm. If the patientʼs heart rate was above 65bpm,
a beta-blocker (5mg Metroprolol, Recordati Pharma GmbH, Ger-
many) was administered intravenously. Following CSCT, contrast-
enhanced angio/cardiac CT was performed.

Machine learning-based Calcium scoring software

The automated software was trained on 1261 anonymized data-
sets from routine coronary artery calcification examinations from
multiple vendors, scanners, and from different hospitals. No train-
ing data sets were analyzed in the current study.

First, the standard 130 HU threshold is applied to the image to
identify voxels as calcium candidates. For each candidate voxel, a
small piece of image information as well as the voxel position in a
cardiac coordinate system and some local features (e. g., HU value

of the voxel) are extracted. The Deep Learning model works with
two components, a convolutional neural network (CNN) with
ResNet architecture that processes the image piece around the
voxel and a dense network that processes the position in the heart
coordinate system and the local features. The results of both net-
works are merged and plugged into a classifier that outputs the
probability of coronary calcium for each voxel. If the average
probability of a connected cluster is higher than a predefined
threshold, it is marked in the application. The CNN is accompa-
nied by an atlas trained with segmented coronaries from CTAs.
Therefore, this component indicates whether a voxel is likely to
be coronary or not, thus excluding heart valves, etc.

The next step is a deep learning algorithm that provides the
position of the LM-LAD-LCX bifurcation. For this, the final classifi-
cation of the branch is performed using a simple, fully connected
neural network whose features include the spatial coordinates of
each voxel identified as belonging to the coronary arteries and the
coordinates of the voxel as a function of coronary bifurcation. This
model yields 4 outcomes, namely the probability that the voxel
belongs to the LM, LAD, CX, or RCA. The final assignment is
made using a softmax function to determine the most likely posi-
tion for each voxel.

Calcium scoring and evaluation of the machine
learning-based software

Semi-automated, clinically established post-processing software
(syngo.via, version VB50 Siemens Healthineers) was utilized to
generate the reference standard. All 505 CSCT scans were dou-
ble-read by two radiologists in multiple sessions (Reader 1 with
nine years and Reader 2 with four years of experience in cardiac
CT diagnostics), and all differences in image interpretation were
resolved by consensus. To avoid bias, both readers were blinded
to the results of the automated software. As previously described
in the literature [4, 10], to detect CAC, a threshold of > 130 HU
was determined on an area of ≥ 1mm2, which corresponded to
the default setting of the software. Calcified lesions of interest
were manually identified and assigned to their respective coron-
ary artery type (LM, LAD, CX, RCA). Regions were labeled to ob-
tain the number of calcified lesions, the artery-based AS, VS, MS,
and total AS, VS, MS. After loading the images into the software,
the time measurement of the automatic system was started after
the onset of the automatic assessment and stopped after the soft-
ware displayed a score. The evaluation time of the reference
standard included the location of all CACs and the correlation of
the automatically derived number of CACs. The time that was
required for the first reading was registered.

The individual scans were assigned to risk groups, which are
standardized [18] and based on the AS. CAC 0: very low risk; CAC
1–10: low risk, CAC 11–100: moderate risk, CAC 101–400:
moderately high risk, CAC > 400: high risk. The automated soft-
ware was used on a regular daily routine diagnostic workstation
(syngo.via, version VB50 Siemens Healthineers). All CSCT scans
(n = 505) were analyzed with the machine learning-based automa-
ted software. The number of calcified lesions was registered and
additionally assigned to the respective coronary artery. The AS,
VS, and MS for the respective coronary artery and the total AS,

▶ Fig. 1 STARD flowchart of patient inclusion.

▶ Abb.1 STARD-Diagramm der Studienpopulation.
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VS, and MSwere determined. The duration of the system run time
was recorded. Subsequently, a double-check of the results was
performed in which the number and location of the calcified
lesions were reviewed. The only human interaction that was
needed was for loading the images into the software (▶ Fig. 2).

Statistics

The available data were analyzed using SPSS (SPSS Statistics 26,
IBM Corp., Armonk, New York, USA), R version 4.0.3 (The R Foun-
dation for Statistical Computing, Vienna, Austria), in particular
using the package Blandr [19]. Continuous variables are present-
ed as mean ± standard or as the median and interquartile range
(IQR) if non-normally distributed. The correlation and agreement
between the standard reference and the machine learning-based
software for coronary artery-based and total AS, VS, MS, and the
number of lesions were calculated with Spearmanʼs rank correla-
tion coefficient () and intraclass correlation coefficient (ICC). The
reference standard and the machine learning-based automatic
software were compared by way of a Bland-Altman procedure.
The agreement was examined after recoding values of 0 to 0.06
and subsequent log transformation because of the right skewness
of the data. Differences in risk classifications were assessed by
weighted kappa analysis (κ). The time difference was determined
using the Wilcoxon signed-rank test.

Results

A total of 505 patients were successfully included in the study
based on the inclusion criteria: 132 (26.1 %) women and 373 men
(73.9 %). The mean age was 57.6 ± 12.6 years (▶ Table 1).

The median time for the semi-automatic collection of data for
the reference standard was 59 seconds (IQR, 39–140 sec) compared
to the time of 5.9 seconds (IQR, 3.9–16 sec) required by the auto-
matic machine learning-based algorithm (p < 0.001).

The correlation and agreement of the automatic algorithm and
the reference standard concerning the number of calcified lesions
were calculated by Spearmanʼs rank correlation coefficient and ICC

▶ Fig. 2 a–b Reconstructions in axial, axial thin-section MIP, coronary, and sagittal planes with calcifications in the LM, LAD, CX, and RCA. a Visually
visible coronary calcifications before application of automatic calcium scoring software. b Calcium regions detected by the automated software
and color-coded for the corresponding artery.

▶ Abb.2 a–b Rekonstruktionen in der axialen Ebene, axialen Dünnschnitt-MIP, Koronar- und Sagittalebene mit Verkalkungen in der LM, LAD, CX
und RCA. a Visuell sichtbare Koronarkalkablagerungen vor Anwendung der automatischen Kalzium-Scoring-Software. b Von der automatischen
Software ermittelte und für die entsprechende Arterie farbkodierte Kalziumregionen.

▶ Table 1 Patient characteristics.

▶ Tab. 1 Patientencharakteristika.

Variables N (%)/mean± SD

Patients 505

Women 132

Men 373

Age (years) 57.6 ± 12.6

BMI 25.4 ± 5.4
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for the respective arteries (Spearmanʼs rho > 0.965; ICC > 0.870)
(p < 0.001) (▶ Table2).

The coronary artery calcium scoring results of the machine
learning-based software correlated highly with the reference
standard for the AS, VS, and MS for all four coronary arteries
(Spearmanʼs rho > 0.969) (p < 0.001). The Spearmanʼs rho of the
individual arteries can be found in ▶ Table 2.

The agreement of the machine learning-based software with
the reference standard was evaluated using ICC. In terms of the
AS, VS, and MS, the ICC was 0.983, 0.978, and 0.981, respectively,
for the LM, 0.954, 0.953, and 0.957 for the LAD, 0.919, 0.922,
and 0.924 for the CX, and 0.989, 0.989 and 0.989 for the RCA.
The ICC for the total values of the AS, VS, and MS was 0.996,
0.995, and 0.992, respectively (p < 0.001) (▶ Table 2).

The Bland-Altman plots mean difference (log-transformed,
theoretical line of no bias y = 1) and 1.96 upper and lower limits
of agreement for all arteries combined was: AS 0.996 (1.33 to
0.74), VS 0.995 (1.40 to 0.71), and MS 0.995 (1.35 to 0.74). The
mean bias was minimal for the respective coronary arteries
(0.964–1.0429). The values for the individual arteries are shown
in ▶ Fig. 3 and ▶ Table 3.

Weighted kappa analysis for risk class assignment showed high
accuracy for the AS in total (weighted κ = 0.99) and for each artery
(κ = 0.96–0.99). There were a total of 88 misclassifications with
consecutive change of the total Agatston score. Most scans were
incorrect within the low-risk category (CAC 1–10: n = 58) and
moderate-risk category (CAC 11–100: n = 22). These minor errors
had no effect on the assignment of the risk group and occurred
mainly due to misregistration of image noise in the heart and
adjacent structures. The fully automated software classified
497 of 505 patients (98.4 %) into the correct risk category.

In five patients (1 %) with significant errors in the moderate
high-risk category (CAC 101–400), the software did not include
calcification at the right coronary ostium (n = 1) or malfunctioned
in differentiating between coronary and pericardial calcifications
(n = 4), thus underestimating the calcium load. Significant over-
estimation of calcium load was observed in three patients in the
high-risk group (CAC > 400) due to erroneous inclusion of calcifi-
cations at the aortic root (n = 1), pericardium (n = 1), and mitral
valve (n = 1) (▶ Fig. 4a–c).

Discussion

In this study, the performance of novel machine learning-based
fully automated post-processing software was evaluated for
artery-based calcium scoring in cardiac CT, compared with clini-
cally established semi-automated post-processing software
serving as the standard of reference. Correlation, agreement, and
risk classification were excellent for each artery and in total.
Compared with the semi-automated approach, the fully automa-
ted analysis allows a tailored survey of each patientʼs calcium load
to be collected in significantly less time.

For the coronary arteries separately and as a total, the correla-
tion and agreement of the number of lesions, the AS, the VS, and
the MS of the machine learning-based software were excellent
compared with the reference standard. The Bland-Altman plot

for the AS, VS, and MS showed a high level of agreement for all
arteries. The Bland-Altman evaluation that was performed is
based on the logarithmized values of the two measurements
(automatic software and reference standard). This transformation
is appropriate in the case of values that are highly right-skewed-
distributed and downward-bounded. In our study, skewness of
the data set was present, as 213 of 505 patients (42%) had a total
AS of 0. Weighted kappa analysis provided accurate risk group
categorization.

Several studies have already evaluated automated software for
CSCT with comparable results regarding correlation and agree-
ment for calcium scoring and risk category classification [10, 11,
20]. Due to differences in study design, data distribution, and
quantitative assessment, comparisons are difficult. The larger
number of patients in our study confirms the robustness of the

▶ Table 2 Measures of association between automatic algorithm and
reference standard.

▶ Tab. 2 Grad der Übereinstimmung zwischen automatischem Al-
gorithmus und Referenzstandard.

Measure Spearman * ICC* 95% CI ICC

LM
number of lesions

0.965 0.870 [0.847–0.890]

LM volume (mm2) 0.982 0.978 [0.973–0.981]

LM equiv. mass (mg) 0.982 0.981 [0.977–0.984]

LM Agatston-score 0.982 0.983 [0.979–0.985]

LAD
number of lesions

0.987 0.948 [0.938–0.956]

LAD volume (mm2) 0.996 0.953 [0.944–0.960]

LADequiv. mass (mg) 0.996 0.957 [0.945–0.964]

LADAgatston-score 0.996 0.954 [0.950–0.961]

CX
number of lesions

0.966 0.952 [0.943–0.960]

CX volume (mm2) 0.969 0.922 [0.910–0.936]

CX equiv. Mmass (mg) 0.969 0.924 [0.910–0.936]

CX Agatston-score 0.970 0.920 [0.905–0.932]

RCA
number of lesions

0.980 0.972 [0.967–0.977]

RCA volume (mm2) 0.986 0.990 [0.988–0.991]

RCA equiv. mass (mg) 0.986 0.990 [0.987–0.991]

RCA Agatston-score 0.986 0.990 [0.998–0.992]

Total
number of lesions

0.995 0.977 [0.973–0.981]

Total volume (mm2) 0.999 0.995 [0.994–0.996]

Total equiv. mass (mg) 0.998 0.992 [0.991–0.993]

Total Agatston-score 0.999 0.996 [0.995–0.996]

LM= left main artery, LAD= left anterior descending artery, CX = circumflex
artery, RCA= right coronary artery.
* all p < 0.001.
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automated software for the evaluation of CSCT. In contrast to
previous studies [10], exclusion of patients with metallic foreign
bodies such as heart valve replacements and cardiac pacemakers
was not necessary. The softwareʼs CNN is trained to differentiate
whether a voxel belongs to a coronary artery or metal implant.

The number of studies evaluating automated CSCT software
with calcium load assignment for each coronary artery is limited
[20]. Since the risk from calcium burden can vary for each coro-
nary vessel, the excellent performance of artery-specific automa-
ted calcium score evaluation can contribute to time-efficient,
cost-effective, tailored CAD screening [21]. The results of our
study suggest that artery-specific automated calcium assessment
software could be integrated into routine clinical practice for the
quantification of coronary calcium with additional branch label-
ing. Since the software will be commercially available, widespread
clinical implementation and workflow integration are anticipated
and will hopefully yield the same results as our study.

We are aware that our study has limitations, mainly due to its
retrospective nature, and we made every effort to create a strong
reference standard with two independent, experienced readers.
All CSCT scans were performed in a single center on two different
CT scanners from the same vendor. It was already presumed that
calcium scoring from other vendors might vary [22]. The auto-
matic software was compared with semi-automatic software
from the same vendor. However, the results of the semi-automa-
tic software can be reproduced on other platforms [23]. Although
this is one of the most extensive known studies evaluating auto-
matic CAC scoring from CSCT scans, an even larger data set would
undoubtedly lead to even more robust results.

Despite the overall excellent performance of the algorithm,
there were some outliers. Misclassification by the automated soft-
ware occurred in five patients in the intermediate to high-risk
group, with calcifications at the ostium of the right coronary ar-
tery not detected in one patient and partial failure to distinguish

▶ Fig. 3 Bland-Altman plots (log-transformed with back transformation) for LM, LAD, CX, and RCA. Mean of log (rating) and log (artificial intelligence)
on the x-axis, Rating by humans/AI result ratio on the y-axis. The theoretical line of no bias is at y = 1. Dashed lines indicate bias and LOAs, and dotted
lines indicate 95% confidence bands. The solid line represents proportional bias. Observations with rating/AI ratios higher than the maximum value on
the y-axis are omitted for presentation, while analysis used all available cases.

▶ Abb.3 Bland-Altman-Diagramme (log-transformiert mit Rücktransformation) für LM, LAD, CX und RCA. Mittelwert von log (Rating) und log
(künstliche Intelligenz) auf der x-Achse, Verhältnis zwischen menschlichem Rating und AI-Ergebnis auf der y-Achse. Die theoretische Linie ohne Bias
liegt bei y = 1. Die gestrichelten Linien zeigen die Verzerrungen und die LOAs an, die gepunkteten Linien die 95%-Konfidenzbänder. Die durch-
gezogene Linie stellt den proportionalen Bias dar. Beobachtungen mit Rating/AI-Verhältnissen, die über dem Maximalwert auf der y-Achse liegen,
wurden für die Darstellung ausgelassen, während für die Analyse alle verfügbaren Fälle verwendet wurden.
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between coronary calcification and calcification in the pericar-
dium in the remaining patients. In a total of three patients, there
was a misclassification into the high-risk group due to an overesti-
mation of the calcium burden because of an incorrect detection
of calcifications at the aortic arch, the pericardium, and the mitral
valve. However, these distinct errors are not difficult to detect
when reviewing the results and may therefore be of limited clini-
cal relevance. For this reason, the results of the automated algo-

rithm should always be verified by a human observer when used in
routine clinical practice.

Furthermore, it would be beneficial to further develop the soft-
ware to apply to non-ECG-triggered, standard CT thorax examina-
tions. A number of studies have already addressed epidemiologic
stratifications of coronary calcification on conventional chest CT
[24–26]. However, the present study was designed to automatic-

▶ Table 3 Bland Altman procedure with log-transformed measurement values, results in back-transformed (exponentiated).

▶ Tab. 3 Bland-Altman-Methode mit log-transformierten Messwerten und rücktransformierten Ergebnissen (potenziert).

Measure Mean bias Upper limit of agreement Lower limit of agreement p for proportional bias

LM volume (mm2) 0.944 2.622 0.340 0.252

LM equiv. mass (mg) 0.961 2.006 0.460 0.117

LM Agatston-score 0.945 2.580 0.346 0.254

LAD volume (mm2) 1.041 2.182 0.496 0.422

LADequiv. mass (mg) 1.047 2.630 0.417 0.771

LADAgatston-score 1.044 2.640 0.481 0.344

CX volume (mm2) 1.047 3.848 0.285 0.745

CX equiv. mass (mg) 1.030 2.802 0.379 0.999

CX Agatston-score 1.050 3.841 0.287 0.972

RCA volume (mm2) 1.014 2.693 0.381 0.929

RCA equiv. mass (mg) 1.011 1.888 0.541 0.852

RCA Agatston-score 1.014 2.434 0.422 0.851

Total volume (mm2) 0.995 1.403 0.706 0.699

Total equiv. mass (mg) 0.995 1.347 0.735 0.485

Total Agatston-score 0.996 1.332 0.744 0.812

LM= left main artery, LAD = left anterior descending artery, CX = circumflex artery, RCA= right coronary artery.

▶ Fig. 4 a–c Reconstruction in axial planes after application of the automatic calcium scoring software in three different patients. Depicted is an
overestimation of calcium load (arrows) by the automatic algorithm due to incorrect inclusion of calcifications at the aortic root a, mitral valve b,
and in the pericardium c.

▶ Abb. 4 a–c Rekonstruktion in axialen Ebenen nach Anwendung der automatischen Kalzium-Scoring-Software bei 3 verschiedenen Patienten. Darges-
tellt ist eine Überschätzung der Kalziumbelastung (Pfeile) durch den automatischen Algorithmus durch fehlerhafte Einbeziehung von Verkalkungen an
der Aortenwurzel a, der Mitralklappe b und im Perikard c.
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ally assess coronary calcification on cardiac CT in a large popula-
tion in a detail-oriented manner.

In conclusion, this study presented the validation of fully auto-
mated software for artery-specific detection of coronary calcifica-
tion. The results showed excellent correlation and agreement
between the automatic and the reference standard for three CAC
scores and the number of coronary lesions in each coronary
artery.

CLINICAL RELEVANCE

▪ Coronary calcium load is known to predict cardiovascular

risk, and its automatic and time-efficient determination is

of clinical importance.

▪ The utilization of machine learning-based applications in

clinical practice can improve workflow efficiency for frequent

CT examinations, such as non-contrast-enhanced calcium

scoring computed tomography.
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