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The thyroid hormones (TH) triiodothyronine (T3) and thyroxine 
(T4) are important regulators of biological functions. Lack of TH 
action can lead to developmental, metabolic, and cardiovascular 
diseases. At the cellular level, nuclear receptors called “thyroid hor-
mone receptors” (THRs) mediate TH function [1]. Heritable syn-
dromes of impaired TH sensitivity include, among others, resist-
ance to thyroid hormone (RTH), which is caused by mutations in 
genes encoding for THRs, in particular the two genes THRA and 
THRB [2]. In general, patients’ symptoms depend on the expression 
pattern of the affected gene and the resulting functional defect. 
Refetoff et al. coined the acronym RTH when they described the 

first patient in 1967 [3], who, 20 years later, was found to have a 
homozygous deletion in the THRB gene encoding TRβ [4]. During 
this time, additional patients with RTH were identified, most of 
whom carried a heterozygous missense mutation in THRB [5, 6]. 
Patients with RTH have elevated T3 and T4 serum concentrations, 
with some having elevated, but never suppressed thyrotropin (TSH) 
levels, making the association with TH-dependent disease relative-
ly clear. The phenotype is variable, and few patients show severe 
symptoms such as attention-deficit hyperactivity disorder (ADHD), 
tachycardia, or goiter [7, 8]. TRβ is mainly responsible for the neg-
ative feedback loop regulating the hypothalamus-pituitary-thyroid 
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Abstr act

Thyroid hormone receptors are nuclear receptors that function 
as transcription factors and are regulated by thyroid hormones. 
To date, a number of variants and isoforms are known. This 
review focuses on the thyroid hormone receptor α (TRα), in 
particular TRα2, an isoform that arises from alternative splicing 
of the THRA mRNA transcript. Unlike the TRα1 isoform, which 
can bind T3, the TRα2 isoform lacks a ligand-binding domain 
but still binds to DNA thereby antagonizing the transcriptional 
activity of TRα1. Although a regulatory role has been proposed, 
the physiological function of this TRα2 antagonism is still un-
clear due to limited in vitro and mouse model data. Recently, 
the first patients with resistance to thyroid hormone due to 
mutations in THRA, the TRα encoding gene, affecting the an-
tagonistic function of TRα2 were described, suggesting a sig-
nificant role of this particular isoform in human physiology.
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axis [9, 10], which explains why TSH is not suppressed despite high 
T3 and T4 levels.

The two genes encoding the TH receptors are TRα (THRA) and 
TRβ (THRB), therefore, the differences in the phenotype of patients 
with TH receptor gene mutations are likely due to different expres-
sion patterns of the two isoforms. With the development of new 
technologies such as whole-exome sequencing (WES), the first 
THRA mutation was identified in 2012 [11], followed shortly by a 
second case in the same year identified by Sanger sequencing [12]. 
Since then, the number of THRA missense mutations has been 
steadily increasing. These patients lack the changes in blood TH 
concentration that make other conditions with RTH so distinct, as 
the hypothalamus-pituitary-thyroid axis is only regulated by TRβ, 
whereas TRα plays no role in this feedback loop. Therefore, the T3 
and T4 serum levels are mainly normal in these patients. It appears 
that the T3 levels are in the higher normal range while T4 is rather 
low-normal resulting in a shifted T3/T4 ratio; however, so far, no 
reference values are available for the T3/4 ratio leaving the rele-
vance of this shift open. The normal T3 and T4 values in most cases 
make the phenotype even more striking, as THRA mutation carri-
ers have an even more severe phenotype than TRHB mutation car-
riers with mainly hypothyroid symptoms. These include growth re-
tardation, mild to moderate mental retardation, mild skeletal dys-
plasia, severe constipation, broad facial features, and bradycardia. 
Interestingly, most of the identified mutations result in partial or 
complete loss of function that inhibits gene regulation in a domi-
nant-negative manner [11–22].

Recently, we described a novel heterozygous point mutation 
that enhances the function of both TRα isoforms, TRα1 and TRα2 
leading to increased T3-activation of TRα1 and increased antago-
nism of TRα2 [23]. This novel mechanism in RTH due to THRA mu-
tations brings the TRα2 splice variant into focus and raises further 
interest in its physiological function.

The TRα encoding gene THRA (17q21.1) was previously de-
scribed as a proto-oncogene “c-erb-A” and was isolated from em-
bryonic chicken, human placental, and rat brain libraries [24, 25]. 
This gene encodes proteins that share structural features with other 
nuclear receptors, consisting of a regulatory A/B-domain, a DNA-
binding domain (DBD), a hinge region, and a ligand-binding do-
main (LBD) (▶Fig. 1a ) [26, 27]. C-erb-A was identified as TRα1 by 
nuclear localization, ability to specifically bind TH and transcrip-
tional regulation of TH-responsive genes [24, 25]. Briefly, TRα1 can 
interact with TH responsive elements (TRE) located in the promot-
er regions of TH-regulated genes via the two C4-zinc fingers in the 
DBD and regulate transcription (▶Fig. 2a ) [28]. Even in an unli-
ganded state, TRs occupy TREs in the function of transcriptional 
regulators [29].

TREs typically consist of a 5´-AGGTCA-3´motif arranged in re-
peats, either as palindromic, inverted palindromic, or direct repeats 
spaced by four nucleotides (DR4) [30]. TRs can be positive or nega-
tive regulators being able to initiate or inhibit transcription depend-
ing on which TRE is bound [31]. The C-terminal LBD is crucial not only 
for regulating activity through ligand binding but also for interact-
ing with cofactors and dimerizing with other nuclear receptors. Upon 
binding to T3, the LBD undergoes conformational changes that lead 
to the replacement of co-repressors (CoRs) by co-activators (CoAs) 
(▶Fig. 2b) [32]. TRs are known to exist as monomers, but can also 

form homodimers [33] as well as heterodimers with other nuclear 
receptors, the most common being the retinoid X receptor (RXR) 
[34, 35]. Interestingly, RXR has been shown to significantly inhibit 
transcriptional activity in vitro, suggesting a regulatory role for this 
heterodimer [36].

In addition to the canonical function as transcription regulators, 
non-canonical TH signaling has a more rapid effect on the target 
cell. Flamant et al. proposed a classification of TH action into four 
subtypes [37]: Type 1 corresponds to the canonical model of TR as 
a transcription factor by direct binding to DNA, as described above, 
with TH signaling in mitochondria via the shorter isoform (as de-
scribed below) also belonging to this type. Type 2 includes signal-
ing via indirect binding to DNA, e. g., by binding to other transcrip-
tion factors. Type 3 includes signaling independent of DNA binding, 
such as direct activation of the phosphoinositide 3-kinase/protein 
kinase B (PI3K/AKT) pathway, which is described in particular for the 
plasma membrane-bound isoform p30 (see below). Type 4 sum-
marizes TH signaling independent of TRs, e. g., integrin αVβ3, which 
has been proposed as a membrane receptor for T3 and T4.

Shortly after the discovery of TRα1, the TRα2- isoform was iden-
tified resulting from an alternative splice site at exon 9 and tran-
scription of an additional exon 10 [38, 39] (▶Fig. 1b). Interesting-
ly, this isoform is unable to bind TH due to the extended C-terminal 
LBD [40] leading to an antagonistic effect on TRα1 and TRβ. How-
ever, TRα2 has only a weak antagonistic effect on TRα1 and TRβ, as 
it needs high expression levels to inhibit transcriptional activity 
(▶Fig. 2c) [41–44] suggesting a rather minor physiological role for 
TRα2. Several mechanisms have been suggested to explain this 
phenomenon: (i) competition for TRE binding sites, (ii) interaction 
with RXR as the preferred dimerization partner of TRα1 on specific 
TREs such as DR4 [45], or (iii) a DNA-independent mechanism such 
as interaction with basal transcriptional factors [41, 46]. Moreover, 
the phosphorylation state of the elongated C-tail has been shown 
to influence the antagonistic effect of TRα2 [47]. Interestingly, the 
inhibitory effect seems to occur only on positive TREs [48], and not 
on negative TREs. The rather weak effect can be explained by the 
lack of interaction between TRα2 and CoRs [42, 43].

Nevertheless, protein studies in mouse models and post mortem 
human brains indicate a high expression ratio of TRα2 to TRα1 
[49, 50]. This suggests a T3-independent regulatory role for the phys-
iology of TRα2. Important for this role is that TRα2 has a functional 
DBD, which still binds to TREs as homo- or heterodimer with RXR, 
albeit with lower affinity as compared to TRα1 [42, 45]. Therefore, 
as long as TRα2 is highly expressed, it forms homodimers and occu-
pies TREs without the capability to be activated by T3 and thus acts 
as an antagonist to TRα1. A direct heterodimer with TRα1, which 
would result in an even more direct TRα1-antagonism, was not ob-
served on any tested TRE. However, since most dimerization studies 
of TRs examined the formation of dimers on TREs indirectly by using 
DNA mobility shift assays, it cannot be excluded that heterodimeri-
zation between TRα1 and TRα2 may occur independently of DNA-
binding, which was suggested by Katz et al. 1995 [47].

Over time, other TRα isoforms were discovered (▶Fig. 1b), in-
cluding a suspected third splicing variant, TRα3 that originates from 
another splicing event in exon 9. Similar to TRα2, this isoform pre-
sumably has an elongated C-tail encoded by the sequence of exon 
10 (448 amino acids), which is also unable to bind to TH. As only one 
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study was able to detect this isoform, [38] it is vastly understudied, 
but the predicted structure anticipates the same function as TRα2. 
Yet another alternative splicing event is responsible for the TRα1-
ΔE6 isoform that carries an exchange of exon 6 for the micro-exon 
6b. The resulting protein lacks T3-binding capacity but can reduce 
the transcription-enhancing activity of TRα1. Its proposed role is also 
regulatory for TRα2 and seems to be important for myocardial de-
velopment, though the expression pattern of TRα1-ΔE6 suggests 
additional roles in other tissues [51]. Although it has not been inves-
tigated, a TRα2-ΔE6 isoform likely exists as well.

Further truncated isoforms, ΔTRα1 and ΔTRα2, have been ob-
served, which are the result of transcription from an internal pro-
moter in intron 7 and thus are missing the N-terminal domain, but 
otherwise resemble TRα1 and TRα2 [52]. Additionally, alternative 
translational start points on the TRα1 mRNA can result in shorter 
isoforms (p43, p30, p33, and p28) that can be activated by T3 but 
lack the ability to bind to DNA. They are thought to be bound to 
the plasma membrane (p30 and p33) [53, 54] or located in the mi-
tochondria (p28 and p43) [55] and maybe responsible for more im-
mediate non-canonical signaling via the MAPK pathway.
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▶Fig. 1	 (a) Functional domains of TRα1 and TRα2 isoforms. Published disease-causing variants are marked on the protein domain structure. (b) 
TRα isoforms resulting from alternative splicing, or different transcription start points, leading to proteins of different molecular weight. (A/B: a 
regulatory domain; DBD: DNA-binding domain; LBD: ligand-binding domain)
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▶Fig. 2	 (a) The DNA binding domains (DBD) of the unliganded TRα1 homodimer bind to responsive elements of the thyroid hormone receptor 
(TRE) in the promoter region of target genes. The ligand-binding domains (LBD) are in complex with co-repressors (CoRs) and target gene expres-
sion is inhibited. (b) Upon binding of thyroid hormone T3, CoRs are exchanged for co-activators (CoA), and the target genes are then expressed. (c) 
The weak antagonistic effect of TRα2 is probably due to competition for TREs between both isoforms without interaction with CoRs.
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Since the first description of a loss-of-function THRA mutation 
in 2012, about 26 other missense mutations have been identified. 
One-half of the identified mutations are positioned in the TRα1-
specific region of the LBD [11, 12, 14, 16, 19, 55–60], the other half 
is located in the coding exons that are shared between TRα1 and 
TRα2 [13, 15–22, 61] (▶Fig. 1). The latter ones could also disturb 
the function of TRα2, so the phenotypes seen in these patients 
might provide information about the physiological role of TRα2.

Although several studies in mice have addressed TRα1 and its 
function [62–66], the relative contributions of both isoforms to the 
overall phenotype have proven difficult to dissect. As mentioned 
earlier, a comparison of protein levels of TR isoforms in mice re-
vealed organ-specific expression, particularly a unique expression 
pattern of high TRα2 abundance in the central nervous system [49], 
suggesting an important regulatory role. The specific knockout of 
TRα2 by adding a strong polyadenylation site that follows the stop 
codon of TRα1 and transcriptional stop codon resulted in overex-
pression of TRα1 and a mixed phenotype with hyper- and hypothy-
roid tissue states [67]. Although this model provides valuable in-
formation to the field, it could not fully explain the physiological 
role of TRα2. Another interesting model is the Pax8-/-TRα0/0 com-
pound mouse. Here Pax8, a differentiation factor for thyroid cells 
was knocked out, which on its own results in the absence of thyroid 
cells and consequently the complete absence of TH. Without T4 
treatment, this defect leads to an early death around weaning time 
[68]. This model was combined with a TR0/0 model, harboring  
a complete deletion of all known TRα isoforms, which on its own 
was viable, but exhibited reduced growth, delayed bone matura-
tion, moderate hyperthermia, and reduced intestinal mucosal 
thickness [69]. The Pax8-/-TRα0/0 compound model survived with-
out TH-treatment and partially rescued the lethal phenotype of 
Pax8-/- mice, but growth was delayed [70]. This study helped to un-
derstand how the unliganded receptors might have a physiologi-
cal function and TH is required to relieve these effects during the 
postnatal stage. In contrast, Pax8-/-TRα1-/- compound models, which 
still express TRα2 and ΔTRα2 isoforms, have a similar lethal pheno-
type to Pax8-/- mice, probably due to an intact TRα2 isoform that 
could affect the activity of other THRs such TRβ [71]. When com-
paring these two studies, a possible physiological role for TRα2 is 
to modulate survival, especially in the first weeks of postnatal de-
velopment.

Most mutations found in patients were studied in vitro using re-
porter gene assays based on TRE-dependent luciferase expression 
and interaction with DNA or with cofactors to show how they in-
hibit TRα function. For mutations jointly affecting TRα1 and TRα2, 
some but not all studies have also examined the effects in both 
splicing isoforms. However, when TRα2 function was tested, most 
mutations had no measurable effect on antagonistic function. In-
terestingly, for two mutations (p.A263S and p.N359Y) the inhibi-
tory effect of TRα2 on TRα1 was slightly reduced [15, 16], suggest-
ing a decrease in the dominant-negative effect.

In contrast to all other studies, we recently reported a THRA mu-
tation that resulted in a gain-of-function in both isoforms [23]. A 
mutated glutamate-to-glycine residue in the first helix of the LBD 
had a promoting effect on T3-inducible TRα1 activity but also re-
sulted in a gain-of-antagonistic effect for TRα2. Based on the com-
putational model of the LBD, we suspect altered dimerization 

interphase, although an altered interaction with TRE or cofactors 
cannot be excluded. Nonetheless, this mutation is the first to en-
hance TRα2 function by increasing its antagonistic capacity, at least 
in vitro. At the same time, TRα1 function was increased as well, lead-
ing to a pronounced T3 effect. Given this strong gain of function 
effect of TRα1 in vitro, one would expect a hyperthyroid phenotype 
of the patients, but this was only the case in patients with mild tachy
cardia. In fact, we observed more hypothyroid symptoms such as 
low IQ and global developmental delay, severe constipation, and 
obesity. Matching these symptoms with our in vitro results suggests 
that the activated antagonistic effect of the mutant TRα2 was able 
to counteract the increased activity of the mutant TRα1. Since in 
most brain regions the TRα2: TRα1 ratio is high [49, 50], the mu-
tant TRα2 appears to significantly suppress the activation of the 
mutant TRα1, eventually leading to the neuronal hypothyroidism 
of patients with the THRAp.(E173G) mutation. In other tissues with 
predominant TRα1 expression, such as cardiomyocytes, the gain-
of-function mutation of TRα1 without TRα2 antagonism results in 
hyperthyroidism-like symptoms. These particular findings of the 
p.(E173G)-mutant, leading simultaneously to activation of TRα1 
and enhanced antagonism of TRα2, suggests that the physiologi-
cal function of TRα2 is antagonistic to TRα1 function, which ap-
pears to be important for the tissue-specific fine-tuning of TH ac-
tion in target cells.

Overall, 33 years after the discovery of TRα2 and almost 10 years 
after the first description of patients with mutations in THRA, the 
first evidence for a physiological effect of TRα2 was found only re-
cently in particular patients carrying a new TRα-mutation. So far, 
the finding is limited to a single case report and in principle other 
-potentially genetic- effects can influence the patient’s wide phe-
notype. However, the obvious antagonistic effect of TRα2, and its 
increase through this p.(E173G) mutation, proposes a novel mech-
anism in RTH due to THRA mutations and argues that TRα2 indeed 
plays a role in controlling the local response of target cells to circu-
lating T3. It is tempting to speculate that any mechanism that in-
creases TRα2 expression relative to TRα1 will decrease the cell re-
sponse to T3. Moreover, even in tissues with low T3 availability, high 
levels of TRα2, or mechanisms that increase the DNA-binding of 
TRα2, are more likely to suppress T3-responsive genes. TRα2 was 
discovered in the 1980s but few publications on this isoform have 
appeared in recent decades, thus, it is now time to unravel the phys-
iological role of TRα2 at different developmental time points and 
in different tissues more thoroughly. Here, special attention must 
be paid to a clear distinction between the isoforms. Most likely, the 
potential of single-cell sequencing will stimulate this process and 
could lead to new and surprising discoveries for the other TRα iso-
forms that have been little studied so far. Unfortunately, the lack 
of suitable TRα antibodies, let alone isoform-specific antibodies, 
prevents the generation of genome-wide chromatin immunopre-
cipitation sequencing data (ChIP-Seq) of any species. For now, a lot 
of knowledge regarding TRα isoforms remains to be uncovered.
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