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ABSTRACT

The long-awaited progress in digitalisation is generating huge

amounts of medical data every day, and manual analysis and

targeted, patient-oriented evaluation of this data is becoming

increasingly difficult or even infeasible. This state of affairs

and the associated, increasingly complex requirements for in-

dividualised precision medicine underline the need for mod-

ern software solutions and algorithms across the entire

healthcare system. The utilisation of state-of-the-art equip-

ment and techniques in almost all areas of medicine over the

past few years has now indeed enabled automation processes

to enter – at least in part – into routine clinical practice. Such

systems utilise a wide variety of artificial intelligence (AI) tech-

niques, the majority of which have been developed to opti-

mise medical image reconstruction, noise reduction, quality

assurance, triage, segmentation, computer-aided detection

and classification and, as an emerging field of research, radio-

genomics. Tasks handled by AI are completed significantly

faster and more precisely, clearly demonstrated by now in

the annual findings of the ImageNet Large-Scale Visual Recog-

nition Challenge (ILSVCR), first conducted in 2015, with error

rates well below those of humans. This review article will dis-

cuss the potential capabilities and currently available applica-

tions of AI in gynaecological-obstetric diagnostics. The article

will focus, in particular, on automated techniques in prenatal

sonographic diagnostics.

ZUSAMMENFASSUNG

Mit dem Fortschreiten der längst notwendigen Digitalisierung

werden täglich riesige Mengen an medizinischen Daten gene-

riert, deren manuelle Analyse und zielgerichtete patientenori-

entierte Auswertung zunehmend schwieriger bis unmöglich

wird. Dieser Umstand und die damit verbundenen, immer

komplexer werdenden Anforderungen an eine individualisier-

te Präzisionsmedizin verdeutlichen die Notwendigkeit moder-

ner Softwarelösungen und Algorithmen im gesamten Ge-

sundheitswesen. Tatsächlich haben in den letzten Jahren in

nahezu allen Bereichen der Medizin mit dem Einsatz moderns-

ter Apparaturen und Techniken nun auch automatisierte Pro-

zessabläufe – zumindest teilweise – Einzug in die klinische
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Routine gehalten. Diese Systeme nutzen verschiedenste An-

wendungen der künstlichen Intelligenz (KI) und sind mehr-

heitlich dazu konzipiert worden, um die medizinische Bild-

rekonstruktion, Rauschunterdrückung, Qualitätssicherung,

Triage, Segmentierung, computergestützte Erkennung und

Klassifizierung oder Radiogenomics als neuartiges For-

schungsfeld zu optimieren. Die von der KI übernommenen

Aufgaben werden dabei deutlich schneller und präziser erle-

digt, was sich spätestens mit den jährlichen Auswertungen

der ImageNet Large-Scale Visual Recognition Challenge

(ILSVCR) ab 2015 mit Fehlerraten deutlich unterhalb der von

Menschen zeigt. In diesem Übersichtsartikel soll auf die po-

tenziellen Möglichkeiten und die derzeitig verfügbaren An-

wendungen der KI in der gynäkologisch-geburtshilflichen

Diagnostik eingegangen werden. Besonderes Augenmerk

wird hierbei auf automatisierte Techniken in der pränatalen

sonografischen Diagnostik gelegt werden.
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Introduction
In 1997 the reigning world chess champion G. Kasparov was con-
quered by a computer (Deep Blue). Public awareness of artificial
intelligence (AI), however, predates this success. In fact, the first
successful AI applications were developed significantly before-
hand and have now become an integral and accepted (often un-
recognised) feature of our daily lives [4]. AI experts from large
companies report that 79 percent of participants in surveys con-
sider AI techniques as strategically highly significant or even vital
for sustainable business success. Put another way, artificial intelli-
gence has now become a mainstream technology worldwide in
every industry. Competencies in core AI technologies (machine
learning with deep learning, natural language processing and
computer vision) are nowadays indispensable for larger compa-
nies [5].

Although no single accepted definition of artificial intelligence
exists, most exerts would agree that AI as a technology refers to
any machine or system that can perform complex tasks that
would normally involve human (or other biological) brain power
[1–3]. Hence, the term artificial intelligence refers not just to a
single technology but to a family of AI applications in a wide range
of fields (▶ Fig. 1). Machine learning (ML) is a member of this fam-
ily that focuses on teaching computers to perform tasks with a
predetermined goal, without explicitly programming the rules
for performing such tasks. It can be regarded as a statistical meth-
od that continuously improves upon itself through exposure to
increasing volumes of data. This allows such systems to consecu-
tively acquire the ability to correctly recognise objects from
images, texts or acoustic data by searching for common proper-
ties and regularities and fromwhich patterns can ultimately be ex-
tracted.

Deep learning, the flagship discipline of ML, unlike other ma-
chine learning methods, no longer requires direct intervention by
humans. Such machine learning processes are made possible by
artificial neural networks (ANN) or convolutional neural networks
(CNN), which consist of several convolutional layers, followed by a
pooling layer that aggregates the data of the filters and eliminates
superfluous information (▶ Fig. 2). In this way, the abstraction lev-
el of a CNN increases with each of these filter levels. Develop-
ments in the field of computer-aided signal processing and the ex-
pansion of computing power with the latest high-speed graphics
processors now allow an unlimited number of filter layers within a
CNN to be created, which are thus referred to as “deep” (in con-
trast to conventional “shallow” neural networks, which usually
1204 Weiche
consist of only one filter). Such learning is an adaptive process in
which the weighting of all interconnected neurons changes so as
to ultimately achieve the optimal response (output) to all input
variables. The process allows either supervised or unsupervised
approaches to neural network learning. In the former, ML algo-
rithms employ a pre-coded data set to predict the desired out-
come. In contrast, unsupervised approaches are supplied with on-
ly unlabelled (coded) input data in order to identify hidden pat-
terns within them and, consequently, make novel predictions.

Since the early 2000s, deep learning networks have been suc-
cessfully employed, for example, to recognise and segment ob-
jects and image content. AI-assisted voice control and speech rec-
ognition are based on similar principles, for instance, the Amazon
Alexa, Google Home and Apple Siri voice assistants. Such technol-
ogies have a wide range of applications. Their developers, for ex-
ample, claim that it is now possible to utilise audio capture
(“coughing” apps) to identify vocal patterns characteristic of
COVID-19 [6]. Furthermore, automated evaluation of speech
spectrograms can now be employed to identify vocal biomarkers
for a variety of diseases, such as depression [6,7].

In terms of healthcare, computer-assisted analysis of image
data is undoubtedly one of the most significant advantages of AI.
In recent years, a new and rapidly developing field of research has
emerged in this context, which, under the umbrella term “radio-
mics”, aims to employ AI to systematically analyse imaging data
from patients, characterising over a range a large number of indi-
vidual and distinct image features with regard to correlation and
clinical differentiation. In contrast, the term “radiogenomics” re-
fers to a specialised application in which radiomic or other imag-
ing features are linked to genomic profiles [8].
AI and Benefits for Gynaecological-Obstetric
Imaging and Diagnostics

The initial hysteria that AI technologies could potentially replace
clinical radiologists has now abated. In its place is an awareness
that machine learning capabilities will enable personalised AI-
based software algorithms with interactive visualisation and auto-
mated quantification to accelerate clinical decision-making and
analysis time. The uptake of AI in other clinical fields, however, is
still rather modest or hesitant [9–11]. Computer-assisted diagno-
sis (CAD) systems have actually been in use for more than
25 years, in particular in breast diagnostics [12,13]. Novel deep-
learning algorithms are employed to optimise diagnostic capabil-
rt J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author(s).
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▶ Fig. 1 Alan M. Turingʼs 1950 review paper on “machine” intelligence formed the conceptual basis for the introduction of the “Turing test”
to ascertain whether a machine can be said to exhibit artificial intelligence. The development of artificial intelligence and its applications can be
viewed in a temporal context: machine learning and deep learning are not merely related in name; deep learning is a modelling approach that
enables, among other things, problems in modern fields such as image recognition, speech recognition and video interpretation to be solved
significantly faster and with a lower error rate than might be feasible by humans alone [4,47,55].
ities both in the area of mammography and in AI-supported re-
porting of mammasonography data sets, addressing issues limit-
ing the use of conventional CAD systems (high development
costs, general cost/workflow (in)efficiency, relatively high false
positive rate, restriction to certain lesions/entities) [14]. This is il-
lustrated by a recent US-British study in which a CNN was trained
on the basis of 76000 mammography scans, resulting in a signifi-
cant reduction of false-positive and false-negative findings by 1.2
and 2.7% (UK) and 5.7 and 9.4% (USA), respectively, compared to
initial expert findings [15]. In addition, consistent AI support can
also sustainably reduce workload by automatically identifying
normal screening results in advance that would otherwise have
required traditional assessment [16]. OʼConnell et al. have pub-
lished similarly promising data on AI-assisted evaluation of breast
sonography findings. They demonstrated on the basis of 300 pa-
tients that, using a commercial diagnostic tool (S-Detect), auto-
mated detection of breast lesions using a set of BI-RADS descrip-
tors was in agreement with the results obtained by ten radiolo-
gists with appropriate expertise (sensitivity, specificity > 0.8) [17].

The advantage of deep learning algorithms has also been made
explicitly evident in other application areas in our field. Cho et al.,
Weichert J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author
for example, have developed and validated deep learning models
to automatically classify cervical neoplasms in colposcopic im-
ages. The authors optimised pre-trained CNNs in two scoring sys-
tems: the cervical intraepithelial neoplasia (CIN) system and the
lower anogenital squamous terminology (LAST) system. The
CNNs were capable of efficiently identifying biopsy-worthy find-
ings (AUC 0.947) [18]. Shanthi et al. were able to correctly classify
microscopic cervical cell smears as normal, mild, moderate, se-
vere and carcinomatous with an accuracy of 94.1%, 92.1% and
85.1%, respectively, using various CNNs trained with augmented
data sets (original colposcopy, contour-extracted and binary im-
age data) [19]. In the view of Försch et al., one of the main chal-
lenges, generally, to increased integration of AI algorithms in the
assessment of pathology and diagnosis of histomorphological
specimens is that, at present, only a fraction of histopathological
data is in fact available in digital form and thus accessible for auto-
mated evaluation [20]. This situation still applies to the vast ma-
jority of potential clinical AI applications [1,21].

Very comparable approaches have also been pursued over the
last five years in reproductive medicine, in which successful at-
tempts have been made, among other things, to utilise AI tech-
1205(s).
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▶ Fig. 2 Schematic design of a (feed-forward) convolutional network with two hidden layers. The source information is segmented and abstracted
to achieve pattern recognition in these layers and ultimately passed on to the output layer. The capacity of such neural networks can be controlled
by varying their depth (number of layers) and width (number of neurons/perceptrons per layer).
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nologies for embryo selection. These have involved training CNNs
to make qualitative statements based on image data and/or mor-
phokinetic data, to predict the success of implantation [22,23]. A
study by Bori et al. involving more than 600 patients analysed not
only the above-mentioned morphokinetic characteristics but also
novel parameters such as the distance and speed of pronuclear
migration, inner cell mass area, increased diameter of the blasto-
cyst and length of the trophectoderm cell cycle. Of the four test
algorithms, most efficient (AUC 0.77) was the one combining
conventional morphokinetic and the above-mentioned morpho-
dynamic features, with the latter two parameters significantly
more likely to be associated with differences in implanted and
non-implanted embryos [24].

It is beyond dispute that, to date, only relatively few AI-based
ultrasound applications have progressed fully from academic con-
cept to clinical application and commercialisation. In addition to
the importance of AI in prenatal diagnostics, as discussed in the
following paragraphs, the advantages of AI-based automated al-
gorithms have been very impressively demonstrated in reporting
gynaecological abnormalities, a task that is bound to gain in im-
portance, in particular, given the limited quality of existing ultra-
sound training [25–27]. Even though the first work in this field
dates back more than 20 years [28], significant pioneering work
has been conducted in the last decade in particular, not least due
to the extensive studies of the IOTAWorking Group. Model analy-
ses on risk quantification of sonographically detected adnexal le-
sions have been able to demonstrate the extent to which, on the
one hand, a standardised procedure for qualified assessment and,
1206 Weiche
on the other, a multi-class risk model (IOTA Adnex – assessment
of different neoplasias in the Adnexa) validated on the basis of
thousands of patient histories have made it possible to precisely
and reproducibly assess the quality of sonographic findings of ad-
nexal processes, thereby providing a significant boost to other
study approaches (± AI) in this field [29–31]. The incorporation
of the ADNEX model into a consensus guideline of the American
College of Radiologists (ACR) clearly supports these findings. The
decision to do so is remarkable, as the US professional medical as-
sociations are traditionally considered to be sceptical of ultra-
sound across all disciplines [32]. In a recent study on the validity
of two AI models to determine the character (benign/malignant)
of adnexal lesions (trained on grey-scale and power doppler im-
ages), Christiansen et al. demonstrated a sensitivity of 96% and
97.1%, respectively, and a specificity of 86.7% and 93.7%, respec-
tively, with no significant differences to expert assessments [33].
The additional benefit of various ML classifiers, alone or in combi-
nation, has been investigated in several other approaches, which
have likewise found that, in the future, AI approaches will be able
to identify more ovarian neoplasms and be increasingly employed
in their (early) detection [34–38]. In a recently published study,
Al-Karawi et al. used ML algorithms (support vector machine clas-
sification) to investigate seven differing familiar image texture pa-
rameters in ultrasound still images, which, according to the au-
thors, can provide information about altered cellular composition
in the process of carcinogenesis. By combining the features with
the best test results, the researchers achieved an accuracy of 86–
90% [39].
rt J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author(s).



▶ Fig. 3 Representation of the optical ultrasound simulator Volu-
tracer O.P.U.S. Any volume data set (see also ▶ Fig. 5) can be up-
loaded and be adapted, for instance for teaching, by post-pro-
cessing to acquire appropriate planes (so-called freestyle mode –
without simulator instructions). In the upper right-hand corner of
the screen, the system provides graphical feedback to assist move-
ments to establish the correct target level. The simulation software
also includes a variety of cloud-based training datasets that help
teach users the correct settings using a GPS tracking system and
audio simulator instructions with overlaid animations. Among other
things, the system measures the position, angle of rotation and
time until the required target plane is achieved and compares this
with an expert comparison that can likewise be viewed.
AI in Foetal Echocardiography
Naturally, any analysis of the value of AI raises the question of how
automated approaches can benefit foetal cardiac scanning – both
in terms of diagnostics and with regard to the practitioner – which
is one of the most important but also more complex elements of
prenatal sonographic examinations. Here, it is important to rec-
ognise that although detection rates of congenital heart defects
(CHD) in national or regional screening programmes have im-
proved demonstrably over the last decade, their sensitivity still
ranges from 22.5 to 52.8% [40]. The reasons for this are complex
– one of the main factors is without doubt the fact that the vast
majority of CHDs actually occur in the low-risk population, with
only approximately 10% occurring in pregnant women with
known risk factors. Furthermore, a Dutch study suggests that, in
addition to the lack of expertise in routine clinical practice, factors
such as limited adaptive visual-motor skills in acquiring the correct
cardiac planes and reduced vigilance seem to play a crucial role in
identifying cardiac abnormalities [41].

Experience from cardiology in adults has shown, among other
things, that the use of automated systems (not by any means a
novel conceptual approach) is demonstrably more efficient than
a conventional (manual) approach and is likely to bridge the gap
between experts and less experienced practitioners, while at the
same time reducing inter- and intraobserver variance. Pilot stud-
ies on automated analysis of left ventricular (functional) parame-
ters such as ventricular volume and ejection fraction on the basis
of 2-D images and studies on AI-based tracing of endocardial con-
tours in apical two- and four-chamber views using transthoraci-
cally acquired 3-D data sets have demonstrated accuracy compa-
rable to manual evaluation [42,43]. In this context, Kusunose de-
fined four steps that are critical for developing relevant AI models
in echocardiography (in addition to ensuring adequate image
quality, these steps include level classification, measurement ap-
proaches and, finally, anomaly detection) [44]. Zhang et al. inves-
tigated the validity of a fully automated AI approach to
echocardiographic diagnosis in a clinical context by training deep
convolutional networks using > 14000 complete echocardio-
grams, enabling them to identify 23 different viewpoints across
five different common reference views. In up to 96% of cases, the
system was able to accurately identify the individual cardiac diag-
nostic levels and, in addition, to quantify eleven different mea-
surement parameters with comparable or even higher accuracy
than manual approaches [45]. Does this mean that AI algorithms
will replace echocardiographers or even cardiologists in the fu-
ture? Should we be worried? Have we become members of the
“useless class”, in the provocative words of Harari [46]? The an-
swers to these questions are unambiguous yet complex and
equally applicable to foetal echocardiography. Although AI ap-
proaches will very soon be an integral component of routine car-
diac diagnostics, examiners have a continuing or even increased
responsibility to employ their clinical expertise to understand,
monitor and assess automated procedures and, when errors oc-
cur, to take appropriate remedial action [47]. Arnaout et al. have
successfully trained a model for creating diagnostic cross-section-
al planes using 107823 ultrasound images from > 1300 foetal
echocardiograms [48]. In a separate modelling approach, they
Weichert J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author
were then able to distinguish between structurally normal hearts
and those with complex anomalies. The findings of the AI were
comparable to those of experts. A slightly lower sensitivity/speci-
ficity (0.93 and 0.72, respectively, AUC 0.83) was documented by
Le et al. in 2020 in their AI approach on nearly 4000 foetuses [49].
Dong et al. demonstrated how accurately a three-step CNN is able
to detect different representations of four-chamber views based
on 2-D image files and at the same time provide feedback on the
completeness of the key cardiac structures imaged [50].

In summary, it is beyond question that the essential prerequi-
site for efficient cardiac diagnostics, as discussed above, is the cre-
ation of exact cross-sectional images obtained during examina-
tions. In the final analysis, this prerequisite should apply to all dis-
ciplines, and in particular that of functional imaging diagnostics.
Hinton formulated this pertinently: “To recognize shapes, first
learn to generate images” [51]. Noteworthy here is the recent ap-
proval by the US Food and Drug Administration (FDA) of an adap-
tive ultrasound system (Caption AI) to support and optimise sec-
tional plane creation (and recording of video sequences) echocar-
diography in adults. In the view of the developers, this demon-
strates how the enormous potential of artificial intelligence and
machine learning technologies can be used specifically to improve
access to safe and effective cardiac diagnostics [52]. Another
commercially available high-sensitivity ultrasound simulator
(Volutracer O.P.U. S.) has a comparable AI workflow. The simula-
tor controls and adaptively corrects in real time the manual set-
tings and transducer movements to achieve an exact target plane
in any 2-D image sequence (irrespective of the anatomical struc-
ture) (▶ Fig. 3) [53]. A major advantage of these systems is un-
doubtedly their usefulness in particular in training and advanced
1207(s).



▶ Fig. 4 Four-chamber view of a foetal heart in week 23 of pregnancy. The foetusʼ spine is located at 3 oʼclock, the four-chamber view can be seen
in a partially oblique orientation. In addition to abdominal and cardiac circumference, the inner outline of the atria and ventricles is automatically
recognised, traced and quantified in the static image. Similarly, HeartAssist can annotate and measure all other cardiac diagnostic sectional planes
(axial/longitudinal).

GebFra Science | Review
training, since, among other things, the integrated self-learning
mode can be used to automatically train, evaluate and certify op-
erators without the need for experts to personally adjust settings
[54].

Due to its comparatively small size, the foetal heart usually
takes up a comparatively small area of the US image, and this, in
turn, requires any algorithm to learn to ignore at least a portion of
the available image data. Another difference to postnatal echo-
cardiography is that the relative orientation and position of the
heart in the image in relation to the position of the foetus in the
uterus can vary considerably, further complicating image analysis
[55,56]. HeartAssist is an interesting approach to automated
recognition, annotation and measurement of cardiac structures
using deep-learning algorithms that is about to be launched on
the market. HeartAssist is an intelligent software tool employed
in foetal echocardiography that can identify and evaluate target
structures (axial, sagittal) from 2-D static images (directly or as a
single frame extracted from video sequences) of cardiac diagnos-
tic sectional planes (▶ Fig. 4). Noteworthy is that, on the one
hand, the tool can capture even partially obscured image informa-
tion and integrate it into the analysis and, on the other hand, the
image recognition is successful even with a limited sonographic
window. This approach, like most algorithms to automate (foetal)
diagnostics (e.g. BiometryAssist, Smart OB or SonoBiometry), is
based on segmentation (abstraction) of foetal structures. It
employs a wide variety of automated segmentation techniques
(pixel, edge and region based models, as well as model and tex-
ture based models), which are usually combined to achieve better
results [57,58].
Particular significance of 3-D/4-D technology
The introduction of 3-D/4-D technology, now pre-installed on
most US systems, has now opened up a range of diverse display
options that are being increasingly utilised for automated image
1208 Weiche
analysis and layer creation. With this technology some manufac-
turers are offering commercial software tools to facilitate a vol-
ume-based approach to foetal echocardiography and its stan-
dardised interpretation (Fetal Heart Navigator, SonoVCADheart,
Smart Planes FH and 5D Heart). The latter algorithm facilitates a
standardised workflow-based 3-D/4-D evaluation of the cardiac
anatomy of the foetus through implementation of “foetal intelli-
gent navigation echocardiography” (FINE) (▶ Fig. 5). This method
analyses STIC (spatial temporal image correlation) volumes with
the four-chamber view as the initial plane of volume acquisition.
In the next step, predefined anatomical target structures are
marked and the nine diagnostic planes needed for a complete foe-
tal echocardiographic assessment are automatically recon-
structed. Each plane can subsequently be evaluated independent-
ly of the others (e.g. quantitative analysis of the outflow tracts)
and, if required, then be manually adjusted. Yeo et al. showed that
98% of cardiac abnormalities could be detected using this method
[59]. This has been shown to be easy to learn and simplifies work-
flows to evaluate the foetal heart independently of expert practi-
tioners, a feature that is particularly important for capturing con-
genital anomalies in detail [60,61].

Acquisition and quantification of objectifiable foetal cardiac
functional parameters is similarly demanding and thus examiner-
dependent, similar to manual level reconstruction. At this junc-
ture, special mention should be made of speckle tracking echo-
cardiography, which provides quantitative information on two-di-
mensional global and segmental myocardial wall movement and
deformation parameters (strain/strain rate) on the basis of
“speckles” caused by interference from random scatter echoes in
the ultrasound image. The introduction of semi-automatic soft-
ware (fetalHQ), which uses a 2-D video clip of the heart and man-
ual selection of a heart cycle and corresponding marking of the
annulus and apex, has now made it possible for less experienced
practitioners to quantify the size, shape and contractility of 24 dif-
ferent segments of the foetal heart using AI-assisted analysis of
rt J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author(s).



▶ Fig. 5 5DHeart (foetal intelligent navigation echocardiography, FINE) program interface with automatically reconstructed diagnostic planes of
an Ebsteinʼs anomaly of a foetus in the week 33 of pregnancy (STIC volume). The atrialised right ventricle is clearly visible as a lead structure in the
laevorotated four-chamber view (cardiac axis > 63°). The foetusʼ back is positioned at 6 oʼclock by default after the automated software has been
implemented (volume acquisition, on the other hand, was performed at 7–8 oʼclock, see ▶ Fig. 5). Analysis of the corresponding planes has also
revealed a tubular aortic stenosis (visualised in three-vessel view, five-chamber view, LVOT and aortic arch planes).

▶ Fig. 6 Software tools for functional analysis of the foetal heart. Semi-automated approach to speckle tracking analysis using fetalHQ in the foetus
examined in ▶ Figs. 3 and 5 with Ebsteinʼs anomaly (a). A selected cardiac cycle is analysed in the approach using automatic contouring
of the endocardium for the left and/or right ventricle and subsequent quantification of functional variables such as contractility and deformation.
Automated calculation of the (modified) myocardial performance index (MPI, Tei index) by spectral Doppler recording of blood flow across the
tricuspid and pulmonary valves using MPI+ (b).
these speckles [62–64] (▶ Fig. 6). Beyond this, AI methods to an-
alyse Doppler-based cardiac function (modified myocardial per-
formance index (Mod-MPI), previously termed the Tei index) have
Weichert J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author
been developed in recent years and are now commercially avail-
able [65,66].
1209(s).



▶ Fig. 7 (Semi-)automatic reconstruction after application of 5DCNS+ of an axially acquired 3-D volume of the foetal CNS (biparietal plane) in
a foetus with a semilobar holoprosencephaly in week 23 of pregnancy. The complete neurosonogram reconstructed from the source volume
comprises the 9 required diagnostic sectional planes (3 axial, 4 coronal and 2 sagittal planes). In the axial planes, automatic biometric measure-
ments (not shown) are taken, which can be adjusted subsequently by hand at any time.

GebFra Science | Review
AI in standardised diagnostics
of the foetal CNS

As mentioned above, the decisive advantage of automated tech-
niques in prenatal diagnostics is clearly that they will allow less ex-
perienced practitioners to correctly identify highly complex ana-
tomical structures such as the foetal heart or CNS in a standard-
ised and examiner-independent manner. The basis for such tools
is formed by transthalamic (TT) 3-D volume data sets (analogous
to the sectional image setting needed to quantify biparietal diam-
eter) acquired with AI-assisted post-processing and evaluation.
These allow a primary examination of the foetal CNS with extrac-
tion of the transventricular (TV) or transcerebellar (TC) plane from
the volume block (SonoCNS, Smart Planes CNS) or even a com-
plete neurosonogram (5DCNS+) (▶ Fig. 7). After axial alignment
of the corresponding B and C planes and marking of thalamic nu-
1210 Weiche
clei or the cave of the septum pellucidum, the latter algorithm
also automatically reconstructs the coronal and sagittal sectional
planes required for a complete neurosonogram (▶ Fig. 5). The lat-
ter working group documented successful visualisation rates of
97.7–99.4% for axial, 94.4–97.7% for sagittal and 92.2–97.2%
for coronal planes in a prospective follow-up study using the
5DCNS+ modified algorithm [67]. A retrospective clinical val-
idation study of more than 1100 pregnant women yielded similar
results [68]. In contrast to the data of Pluym et al., the authors
were able to show in their study, among other things, that this
standardised approach could be used to collect biometric param-
eters that, in comparison, were similarly valid and reproducible to
those obtained manually [69]. Ambroise-Grandjean et al. were
similarly unequivocal when they showed in a feasibility study that
the three primary planes including biometric measurements
could be consistently reconstructed and quantitatively evaluated
rt J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author(s).



using AI (Smart Planes CNS) with low intra- and interobserver re-
producibility [ICC > 0.98] [70].

These algorithms are already in use in clinical practice, howev-
er, they usually require intermediate steps taken by the practition-
er. Nevertheless, in the future specially trained CNNs will be able
to fully automatically extract all sectional planes from raw vol-
umes. Huang et al. demonstrated that “view-based projection
networks” (CNN) from post-processed 3-D volumes (axial output
volume and corresponding 90° sagittal/coronal rotations) could
reliably detect and image five predefined anatomical CNS struc-
tures in parallel in three different 3-D projections, of which the
best detection rates were achieved once again on the axial view
[71]. The latter is due, among other things, to the gradual reduc-
tion in image quality inherent in the orthogonal B and C planes.
The authors used the data sets of the INTERGROWTH-21 study
group for their analysis. Precise B image quality and accuracy in
sectional plane imaging is an indispensable prerequisite for 2-D-
based AI approaches, especially for automated detection of ab-
normal CNS findings, as recently published by Xie et al. [72]. In
this paper, CNN were trained using 2-D and 3-D datasets of ap-
proximately 15000 normal and 15000 abnormal standard axial
planes and assessed for segmentation efficiency, binary classifica-
tion into normal and abnormal planes, and CNS lesion localisation
(sensitivity/specificity 96.9 and 95.9%, respectively and AUC
0.989). Before such AI approaches can be used in those areas
where they would be of greatest benefit, namely in routine diag-
nostics, a number of “hurdles” still need to be cleared. These are
primarily associated with the initial steps in imaging diagnostics
(in keeping with Hintonʼs exhortation that quality is based on im-
age generation), and this ultimately also applies to other foetal
target structures in prenatal diagnostics [51]. It would be interest-
ing here to determine, for example, to what extent such auto-
mated approaches enable standardised plane reconstruction in
combination with DL algorithms to classify and thus accurately
and reproducibly detect, annotate and quantify two- and three-
dimensional measurement parameters, thereby enabling diag-
nostics that in the future are significantly less dependent on the
presence of an expert practitioner. Of particular interest are,
clearly, approaches in which, for example, specialised neural net-
works are used to optimise image acquisition protocols in obstet-
ric ultrasound diagnostics, thereby shortening examination times
and providing comprehensive anatomical information, even from,
at times, obscured image areas. For example, Cerrolaza et al.
demonstrated (analogous to deep reinforcement learning models
for incomplete CT scans) that, even if only 60% of the foetal skull
were captured in a volume dataset, AI reconstruction would
nevertheless still be possible [73,74].

The potential of neural networks has also been demonstrated
by recent papers by Cai et al. who developed a multi-task CNN
that learns how to detect standard axial planes, such as foetal ab-
dominal and head circumference (transventricular sectional
plane), by detecting eye movements of the examiner when view-
ing video sequences [75]. Baumgartner et al. were able to show
that a specially trained convolution network (SonoNet) could be
used to detect thirteen different standard foetal planes in real
time and correctly record target structures [76]. Yacub et al. took
a similar approach, using a neural network to, on the one hand,
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ascertain the completeness of a sonographic abnormality diagno-
sis and, on the other, to perform quality control of the image data
obtained (in accordance with international guidelines). No differ-
ences were demonstrated in this case compared to manual expert
assessment [77,78]. The same approaches to modelling now also
form the (intelligent) basis for the worldʼs first fully integrated AI
tool for automated biometric detection of foetal target structures
and AI-supported quality control (SonoLyst) [5]. The potential of
neural networks is also apparent in recent data from a British re-
search group on AI-based 2-D video analysis of the workflow of
experienced practitioners. This analysis allows systems to predict
which transducer movements are most likely to result in the crea-
tion of precise target planes in abnormality diagnostics [79]. The
same research group were able to demonstrate, on the one hand,
that their initial AI models were able to automatically recognise
video content (sectional planes) and add appropriate captions
and, on the other hand, that specially trained CNNs were able to
evaluate combined data from a motion sensor and an ultrasound
probe, converting them into signals to augment correct trans-
ducer guidance [80,81].
AI and Other Clinical Applications
in Obstetric Monitoring

Optimisation of biometric accuracy is another area where AI can
be directly clinically relevant. Regardless of the assistance systems
already mentioned (see above) and notwithstanding the signifi-
cant improvement in ultrasound diagnostics over the past few
years, such optimisation remains a challenge. The majority of foe-
tal weight estimation models are based on parameters (head cir-
cumference, biparietal diameter, abdominal circumference, fem-
oral diaphysis length) measured during conventional 2-D ultra-
sounds. Hitherto, the development of the soft tissue of the upper
and lower extremities, although not directly biometrically quanti-
fiable, was the established surrogate parameter for foetal nutri-
tional status [82]. Three-dimensional measurement of the frac-
tional limb volume (FLV) of the upper arm and/or thigh has been
shown to improve the precision of foetal weight estimation, even
in multiple pregnancies [83]. Automated techniques that allow
much faster and, above all, examiner-independent processing of
3-D volumes (efficient recognition and tracing of soft tissue
boundaries) have clearly demonstrated the clinical benefit of volu-
metric recording of FLV (5DLimbVol), which implements work-
flow-based, relevant, axially acquired 3-D data sets of the upper
arm or thigh and incorporates them into conventional weight es-
timation (▶ Fig. 8) [84,85].

AI has now also made it possible to automatically record sono-
graphic parameters such as angle of progression (AoP) and head
direction (HD), even as birth progresses. The first findings on this
technique were published by Youssef et al. in 2017, who found
that an automated approach is possible and can be used in a re-
producible manner [86]. Just how far commercially available soft-
ware solutions such as LaborAssist will improve clinical care re-
mains to be seen, however.

A heated debate, illustrative of the occasional difficulties en-
countered in employing automated techniques in clinical prac-
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▶ Fig. 8 Automated sectional plane reconstruction of a foetal thigh
in week 35 of pregnancy to estimate foetal weight (soft tissue
mantle of the thigh reconstructed by 5DLimb). After 3-D volume
acquisition of the thigh aligned transversely, the soft tissue volume
calculated in this way can be used to improve the accuracy of esti-
mations of foetal weight.
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tice, is under-way regarding the potential benefits of computer-
assisted assessment of peripartal foetal heart rate (electronic foe-
tal heart rate monitoring), which, due to the clear interobserver
variability and subjectivity in assessing CTG abnormalities, could,
at least theoretically, benefit from objective automated analysis.
Prospective randomised data from the INFANT study group did
not demonstrate any advantage over conventional visual assess-
ment by medical staff present during delivery, neither in neonatal
short-term outcomes nor in outcomes at two years [87]. The
question of how far methodological weaknesses in the design of
the study contributed to these non-significant differences be-
tween the study arms (Hawthorne effect) remains open [88,89],
especially since other computer-based approaches delivered
clearly promising data [90].

To answer this, Fung et al. used data from two large popula-
tion-based cohort studies (INTERGROWTH 21st and its phase II
study INTERBIO 21st) to show machine learning can be employed
to analyse biometric data from an ultrasound performed between
weeks 20 and 30 of pregnancy along with a repeat measurement
within the following ten weeks of pregnancy to determine gesta-
tional age to within three days and to predict the growth curve
over the next six weeks in an individualised way for each foetus
[91]. There is no doubt that AI will become ever more important
in the future, potentially, for instance, in assessing and predicting
foetomaternal risk constellations such as prematurity, gestational
diabetes and hypertensive diseases of pregnancy [92].
Summary
The authors of a recent web-based survey at eight university hos-
pitals stated, among other things, that the majority of respond-
ents tend to view AI in a positive light and, ultimately, believe that
the future of clinical medicine will be shaped by a combination of
human and artificial intelligence, and that sensible use of AI tech-
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nologies will significantly improve patient care. The study partici-
pants considered the greatest potential lay in analysis of sensor-
based, continuously collected data in electrocardiography/elec-
troencephalography, in monitoring of patients in intensive care
and in imaging procedures in targeted diagnostics and workflow
support [93]. Specifically with regard to our field, it should be em-
phasised that the continuous development of ultrasound systems
and the equipment associated with them, for instance high-reso-
lution ultrasound probes/matrix probes for gynaecological and
obstetric diagnostics, along with the inexorable introduction of ef-
ficient automated segmentation techniques for two and, in par-
ticular, three-dimensional image information, will increasingly in-
fluence and optimise the entire process chain in the future, from
image data creation, analysis and processing through to its man-
agement.

A recent systematic review of more than 80 studies on auto-
mated image analysis found that AI delivered findings that were
equivalent in precision to those from practitioners who were ex-
perts in their field. However, the authors also found that in many
publications, no external validation of the various AI algorithms
had been performed, or only inadequate validation. This situation,
together with the collaboration between AI developers and clini-
cians, which is already well underway in many areas but still needs
to be intensified, is currently making further implementation in
relevant clinical processes even more difficult [94]. The current
state of AI utilisation in healthcare is similar to the situation of
owning a brand new car; making use of it will require both petrol
and roads. In other words, the respective algorithms need to be
“fuelled” with, for example, (annotated) image data, but they will
only be able to fully realise their potential if the appropriate infra-
structure – efficient and scalable processes with an AI-ready work-
flow – is in place [21].
Outlook
AI systems continue to be developed and integrated into clinical
processes, and with this comes tremendous expectations on how
they will advance healthcare. What is certain is that integrating
these tools is likely to fundamentally change work and training
methods in the future. They will support all healthcare profession-
als by providing them with rapidly and reliably collected data and
facts to interpret findings and consultations, which will, in the
best case scenario, allow them to focus more on the uniquely hu-
man elements of their profession. Those tasks that cannot be per-
formed by a machine because they demand emotional intelli-
gence, such as targeted patient interaction to identify more
nuanced symptoms and to build trust through human intuition,
highlight just how unique and critical will be the human factor in
deploying clinical AI applications of the future [95]. If nothing
else, this reminds us that AI is a long way from truly replacing hu-
mans. Almost 100 years ago the visionary writings of Fritz Kahn
(“The Physician of the Future”) were already foreshadowing cur-
rent and future AI technologies in medicine: highly plastic con-
structivism in which technological civilisation and experimental
science can synergistically transform the biology of the human
body [96,97]. One thing that emerges from these advances is
that, notwithstanding all technical progress, humans have not
rt J et al. The Use of… Geburtsh Frauenheilk 2021; 81: 1203–1216 | © 2021. The author(s).



▶ Table 1 Recommendations from the 2018 consensus workshop
on translational research held in Bethesda, USA on advancing and
integrating artificial intelligence applications in clinical processes
(adapted from Allen et al. 2019, Langlotz et al. 2019 [101,102]).

Research priorities for artificial intelligence in medical imaging

Structured AI use cases and clinical problems need to be created and
defined that can be actually solved by AI algorithms.

Novel image reconstructionmethods should be developed to efficiently
generate images from source data.

Automated image labelling and annotation methods that efficiently
provide training data to explore advanced ML models and enable their
intensified clinical use need to be established.

Research is required on machine learning methods that can more
specifically communicate and visualise AI-based decision aids to users.

Methods should be established to validate and objectively monitor
the performance of AI algorithms to facilitate regulatory approval
processes.

Standards and common data platforms need to be developed to enable
AI tools to be easily integrated into existing clinical workflows.
yet, nor ever will, render themselves superfluous. Predictions that
up to 47% of all jobs would be lost due to automation would seem
to be unfounded; in healthcare in particular, more jobs are being
created than are being lost [46,98,99].

What is needed to optimally exploit the potential of AI algo-
rithms is interdisciplinary communication and constant involve-
ment of physicians as the primary users of these tools in the pro-
cesses of developing and the modes of operating AI tools. In the
absence of such involvement, the medicine of tomorrow will be
shaped exclusively by the vision of engineers and will be less able
to meet the actual requirements of personalised (precision) med-
icine [47,100]. ▶ Table 1 summarises the most urgent research
priorities for AI as formulated by the participants at the 2018 con-
sensus workshop of radiological societies [101,102]. From the
perspective of gynaecology and obstetrics, mention should be
made that regarding AI-assisted sonographic parameters, contin-
ued efforts are underway to optimise imaging (pre-/post-pro-
cessing) in both conventional 2-D imaging and 3-D/4-D volume
sonography, and that, similar to the established algorithms with
an automated workflow, the need is for further AI technologies
that provide intuitive user guidance, ease of use and general
(cross-device) availability to efficiently analyse image and volume
data. In addition, assisted systems for real-time plane adjustment
and target structure quantification should be further pursued for
routine diagnostics. Of particular note here, is the fact that it is
now possible to incorporate pre-trained algorithms to analyse
oneʼs own population-based data (transfer learning). This consti-
tutes an attractive and, above all, reliable method, as training a
new neural network with a large volume of data is computation-
ally and time intensive [103]. The process adopts the existing,
pre-trained layers of a CNN and adapts and re-trains only the out-
put layer to recognise the appropriate object classes of the new
network.
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It is highly likely that the greatest challenge facing targeted use
of AI in healthcare in general, however, is not whether automated
technologies are fully capable of meeting the demands placed on
them but whether they can be incorporated into everyday clinical
practice. To achieve this, among other things, appropriate appro-
val procedures must be initiated, the appropriate (clinical) infra-
structure must be established, standardisation ensured, and,
above all, clinical staff must be adequately trained. It is clear that
in the future these hurdles will be surmounted, but the technolo-
gies themselves may well take longer to mature. We should there-
fore expect to see still limited uptake of AI in clinical practice over
the next five years (with more widespread uptake within ten years)
[104].
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