Article published online: 2020-10-22

& Thieme

Accuracy of convolutional neural network-based artificial
intelligence in diagnosis of gastrointestinal lesions
based on endoscopic images: A systematic review and

meta-analysis

@OESO

Authors

Babu P. Mohan’, Shahab R. Khan?, Lena L. Kassab3, Suresh Ponnada®, Parambir S. Dulai’, Gursimran S. Kochhar®

Institutions

1 Gastroenterology & Hepatology, University of Utah
Health, Salt Lake City, Utah, United States

2 Gastroenterology, Rush University Medical Center,
Chicago, Illinois, United States

3 Internal Medicine, Mayo Clinic, Rochester, Minnesota,
United States

4 Internal Medicine, Roanoke Medical Center, Roanoke,
Virginia, United States

5 Gastroenterology and Hepatology, University of
California, San Diego, California, United States

6 Division of Gastroenterology and Hepatology, Allegheny
Health Network, Pittsburgh, Pennsylvania, United States

submitted 22.4.2020
accepted after revision 8.7.2020

Bibliography

Endoscopy International Open 2020; 08: E1584-E1594

DOI 10.1055/a-1236-3007

ISSN 2364-3722

© 2020. The Author(s).

This is an open access article published by Thieme under the terms of the Creative
Commons Attribution-NonDerivative-NonCommercial License, permitting copying
and reproduction so long as the original work is given appropriate credit. Contents

may not be used for commecial purposes, or adapted, remixed, transformed or
built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Corresponding author

Gursimran Singh Kochhar, MD, FACP, CNSC, Interventional IBD
& Therapeutic Endoscopy, Division of Gastroenterology,
Hepatology & Nutrition, Allegheny Health Network, 1307,
Federal Street, Suite B-100, Pittsburgh, PA, 15212, United
States

Fax: +1-412-359-8977

Gursimran.Kochhar@ahn.org

@ Supplementary material is available under
https://doi.org/10.1055/a-1236-3007

ABSTRACT

Background and study aims Recently, a growing body of
evidence has been amassed on evaluation of artificial intel-
ligence (Al) known as deep learning in computer-aided di-
agnosis of gastrointestinal lesions by means of convolution-
al neural networks (CNN). We conducted this meta-analysis
to study pooled rates of performance for CNN-based Al in
diagnosis of gastrointestinal neoplasia from endoscopic
images.

Methods Multiple databases were searched (from incep-
tion to November 2019) and studies that reported on the
performance of Al by means of CNN in the diagnosis of gas-
trointestinal tumors were selected. A random effects model
was used and pooled accuracy, sensitivity, specificity, posi-
tive predictive value (PPV) and negative predictive value
(NPV) were calculated. Pooled rates were categorized
based on the gastrointestinal location of lesion (esophagus,
stomach and colorectum).

Results Nineteen studies were included in our final analy-
sis. The pooled accuracy of CNN in esophageal neoplasia
was 87.2% (76-93.6) and NPV was 92.1% (85.9-95.7); the
accuracy in lesions of stomach was 85.8% (79.8-90.3) and
NPV was 92.1% (85.9-95.7); and in colorectal neoplasia the
accuracy was 89.9% (82-94.7) and NPV was 94.3% (86.4-
97.7).

Conclusions Based on our meta-analysis, CNN-based Al
achieved high accuracy in diagnosis of lesions in esopha-
gus, stomach, and colorectum.

Introduction

Early detection of gastrointestinal neoplasia by endoscopy is a
widely adopted strategy to prevent cancer-related morbidity

and/ or mortality. The disease prognosis greatly depends on
the stage of cancer at diagnosis. Gastrointestinal neoplastic
conditions are frequently detected by direct endoscopic visua-
lization by a trained endoscopist and endoscopists use their
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knowledge, gathered from experience of endoscopic appear-
ance, to detect these lesions.

To maximize detection and/or differentiation of a lesion, a
clean mucosal surface and a meticulous mechanical exploration
are paramount. Apart from detecting a lesion, predicting its
potential to be carcinogenic is difficult. In addition, both lesion
detection and its assessment are subject to substantial opera-
tor dependence. To improve detection of lesion by human eye,
various optical enhancements of the endoscope have been
made. High-definition white light endoscopy with or without
chromo-endoscopy, narrow-band imaging (NBI) with or with-
out magnification, confocal laser endomicroscopy, and endocy-
toscopic imaging system are some of the examples.

Recently, a growing body of evidence has been amassed on
use of artificial intelligence (Al) known as deep learning in com-
puter-aided diagnosis (CAD) of health-related conditions based
on medical imaging [1]. A convolutional neural network (CNN)
is a type of deep learning method that enables machines to
analyze various training images and extract specific clinical fea-
tures using a back-propagation algorithm. CNN data-driven
systems are trained on datasets containing large numbers of
images with their corresponding labels. CNN can be seen as a
system that first extracts relevant features from the input ima-
ges and it subsequently uses those learned features to classify a
given image. The network uses convolutions of the input image
to extract the most relevant information that helps to classify
the image into different entities. Based on the accumulated
data features, machine algorithms can diagnose newly ac-
quired clinical images prospectively [2-4].

CNN-based CAD has been reported as being highly beneficial
in the field of endoscopy, including EGD, colonoscopy and cap-
sule endoscopy. [2,5,6] CNN has transformed the field of com-
puter vision and has been shown to work in real-time with raw,
unprocessed frames from the video sequence. [2] In this sys-
tematic review and meta-analysis, we aim to quantitatively ap-
praise the current reported data on the diagnostic performance
of CNN based computer aided diagnosis of gastrointestinal
neoplasia.

Methods
Search strategy

The literature was searched by a medical librarian for the con-
cepts of Al with endoscopy for gastrointestinal lesions. The
search strategies were created using a combination of key-
words and standardized index terms. Searches were run in No-
vember 2019 in ClinicalTrials.gov, Ovid EBM Reviews, Ovid Em-
base (1974 +), Ovid Medline (1946 +including epub ahead of
print, in-process & other non-indexed citations), Scopus (1970
+) and Web of Science (1975 +). Results were limited to English
language. All results were exported to Endnote X9 (Clarivate
Analytics) where obvious duplicates were removed leaving
4245 citations. Search strategy is listed in Appendix 1. The
MOOSE checklist was followed and is listed in Appendix 2. Re-
ference lists of evaluated studies were examined to identify
other potential studies of interest.
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Study selection

In this meta-analysis, we included studies that developed or va-
lidated a deep CNN learning model for diagnosis of neoplasia of
the gastrointestinal tract (esophagus, stomach, and colorec-
tum) using either one or a combination of white-light endos-
copy (WLE), narrow-band imaging (NBI) endoscopy (magnify-
ing and/ or non-magnifying), and chromoendoscopy. Study se-
lection was restricted to only those that used CNN-based deep
machine learning models. Studies were included irrespective of
inpatient/outpatient setting, study sample-size, follow-up
time, abstract/ manuscript status, and geography as long as
they provided the appropriate data needed for the analysis.

Our exclusion criteria were as follows: (1) studies that used
non-CNN-based machine learning algorithms (like support vec-
tor machine etc); (2) studies that used endoscopic optics other
than standard WLE and/or NBI-based images as their training
and testing platform; and (3) studies not published in English
language. In cases of multiple publications from a single re-
search group reporting on the same patient cohort and/or
overlapping cohorts, each reported contingency table was
treated as being mutually exclusive. When needed, authors
were contacted via email for clarification of data and/or study-
cohort overlap.

Data abstraction and analysis

Data on study-related outcomes from the individual studies
were abstracted independently onto a predefined standardized
form by at least two authors (BPM, SRK). Disagreements were
resolved by consultation with a senior author (GK). Diagnostic
performance data were extracted and contingency tables were
created at the reported thresholds. Contingency tables consis-
ted of reported accuracy, sensitivity, specificity, positive pre-
dictive value (PPV) and negative predictive value (NPV). The re-
sults from testing of the algorithm were collected for the
pooled analysis.

Definitions are as follows: (1) Accuracy: number of lesions
detected by CNN/total number of lesions; (2) Sensitivity: de-
tected number of correct neoplastic lesions by CNN (true posi-
tives)/histologically confirmed number of neoplastic lesions
(total positives); (3) Specificity: detected number of correct
non-neoplastic lesions by CNN (true negatives)/number of his-
tologically proven non-neoplastic lesions (total negatives); (4)
PPV: detected number of correct neoplastic lesions by CNN
(true positives)/number of neoplastic lesions diagnosed by
CNN (true positives +false positives); and (5) NPV: number of
lesions correctly diagnosed as non-neoplastic lesions by CNN
(true negatives)/number of lesions diagnosed as non-neoplas-
tic by CNN (true negatives +false negatives).

If a study provided multiple contingency tables for the same
or for different algorithms, we assumed these to be indepen-
dent from each other. This assumption was accepted, as the
goal of the study was to provide an overview of the pooled rates
of various studies rather than providing precise point esti-
mates. This methodology has been used and reported in litera-
ture [1]. A formal assessment of study quality was not done,
due to the non-clinical nature of the studies.
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Accuracy

Group by Study name Statistics for each study Event rate and 95% CI

Event rate Lower limit Upper limit
colon Ahmad,2019 [11] 0.925 0.854 0.963 |
colon Byrne, 2019 [2] 0.940 0.873 0.973 i
colon Chen, 2018 [13] 0.901 0.825 0.946 |
colon Ito, 2018 [20] 0.812 0.723 0.877 .
colon 0.899 0.820 0.946 <
esophagus Cai, 2019 [12] 0.914 0.841 0.955 |
esophagus Zhang, 2017 [26] 0.794 0.703 0.862 :
esophagus Zhao, 2019 [6] 0.892 0.815 0.940 B
esophagus 0.872 0.760 0.936 <
stomach Cho, 2019ai1 [14] 0.930 0.860 0.966 =
stomach Cho, 2019ai2 [14] 0.745 0.651 0.821 -
stomach Cho, 2019ai3 [14] 0.864 0.782 0.918 -
stomach Cho, 2019ai4 [14] 0.785 0.694 0.855 -
stomach Cho, 2019ai5 [14] 0.665 0.567 0.750 —
stomach Horiuchi, 2019 [18]  0.853 0.769 0.910 -
stomach Li, 2019 [22] 0.909 0.835 0.952 =
stomach Liu, 2018 [23] 0.985 0.929 0.997 -
stomach Sakai, 2018 [25] 0.828 0.741 0.890 -
stomach Wu, 2019 [5] 0.925 0.854 0.963 =
stomach 0.858 0.798 0.903 ¢

-1.00 -0.50 0.00 0.50 1.00

» Fig.1 Forest plot, accuracy.

We used meta-analysis techniques to calculate the pooled
estimates in each case following the random-effects model
[8]. We assessed heterogeneity between study-specific dom-
effects model [8]. We assessed heterogeneity between study-
specific estimates by using Cochran Q statistical test for hetero-
geneity, 95% prediction interval (Pl), which deals with disper-
sion of the effects, and the 12 statistics [9, 10]. In this, values
<30%, 30%-60%, 61%-75%, and >75% were suggestive of
low, moderate, substantial, and considerable heterogeneity,
respectively. A formal publication bias assessment was not
done due to the nature of the pooled results being derived
from the studies.

All analyses were performed using Comprehensive Meta-A-
nalysis (CMA) software, version 3 (BioStat, Englewood, New Jer-
sey, United States).

Results
Search results and study characteristics

The literature search resulted in 4245 study hits (study search
and selection flowchart: Supplementary Fig. 1). All 4245 stud-
ies were screened and 106 full-length articles and/or abstracts
were assessed. Nineteen studies [2,5,6,11-26] reported on
the detection and/ or classification of gastrointestinal neoplas-
tic lesions by CNN. Among the 19 studies, five [6,12,15,17,26]
reported on efficacy of CNN in diagnosing esophageal neopla-
sia, eight [5,14,16,18,19,22,23,25] reported on use of CNN in
neoplasia of the stomach and six [2,11,13,20,21, 24] evaluat-

Mohan Babu P et al. Accuracy of convolutional... Endoscopy International Open 2020; 08: E1584-E1594 | © 2020. The Author(s).

ed use of CNN in diagnosing colorectal neoplasia. Seven studies
[5,11,12,14,19,20,25] used standard WLE, eight used NBI
(magnifying and/ or non-magnifying) [2,6,13,15,18,22,23,
26] and four [16,17,21,24] used a combination of standard
WLE and/or NBI and/or chromo-endoscopy images (» Table 1).

From all the included studies, we were able to extract a total
of 26 contingency table datasets for CNN performance in diag-
nosing gastrointestinal lesions (» Table 1).

Meta-analysis outcomes

CNN performance by gastrointestinal location:

Esophageal neoplasia:

The pooled accuracy of CNN in the computer-aided diagno-
sis of esophageal neoplasia was 87.2% (95% Cl 76-93.6). The
sensitivity was 87.1% (95% Cl 69.4-95.3), specificity was
87.3% (95% Cl 74.3-94.2), PPV was 72.3% (95% Cl 41.7-90.5)
and NPV was 92.1% (95 % Cl 85.9-95.7).

Neoplastic lesions in stomach:

The pooled accuracy of CNN in the computer-aided diagno-
sis of neoplastic lesions of the stomach was 85.8% (95% Cl
79.8-90.3). The sensitivity was 75.1% (95 % Cl 57.9-86.9), spe-
cificity was 91.4% (95% ClI 84.3-95.4), PPV was 51% (95% Cl
30.9-70.8) and NPV was 92.1% (95 % Cl 85.9-95.7).

Colorectal neoplasia:

The pooled accuracy of CNN in the computer-aided diagno-
sis of colorectal neoplasia was 89.9% (95% Cl 82-94.6). The
sensitivity was 92.6% (95% Cl 82.8-97), specificity was 92.4%

E1589
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Sensitivity
Group by Study name Statistics for each study Event rate and 95% ClI
Event rate Lower limit Upper limit
colon Ahmad,2019 [11] 0.845 0.760 0.904 -
colon Byrne, 2019 [2] 0.980 0.924 0.995 |
colon Chen, 2018 [13] 0.963 0.902 0.987 . |
colon Ito, 2018 [20] 0.675 0.577 0.759 -
colon Komeda, 2019wl [21] 0.975 0.917 0.993 . |
colon Komeda, 2019nbi [21]  0.948 0.883 0.978 : |
colon Komeda. 2019ce [21] 0.901 0.825 0.946 . ]
colon Ozawa, 2018 [24] 0.920 0.848 0.959 . |
colon 0.926 0.828 0.970 <L
esophagus Cai, 2019 [12] 0.978 0.921 0.994 : |
esophagus Guo, 2019ai1 [15] 0.980 0.924 0.995 . |
esophagus  Guo, 2019ai2 [15] 0.608 0.509 0.699 il
esophagus Horie, 2018 [17] 0.770 0.678 0.842 -
esophagus Zhang, 2017 [26] 0.734 0.639 0.811 -
esophagus Zhao, 2019 [6] 0.870 0.789 0.923 .
esophagus 0.871 0.694 0.953 .
stomach Cho, 2019ai1 [14] 0.607 0.508 0.698 -
stomach Cho, 2019ai2 [14] 0.283 0.203 0.379 -
stomach Cho, 2019ai3 [14] 0.005 0.000 0.074 »-
stomach Cho, 2019ai4 [14] 0.067 0.032 0.136 | g
stomach Cho, 2019ai5 [14] 0.957 0.894 0.983 .
stomach Hirasawa, 2018 [16] 0.922 0.851 0.961 =
stomach Horiuchi, 2019 [18] 0.954 0.891 0.981 a
stomach Ikenoyama, 2019 [19] 0.656 0.558 0.742 —-
stomach Li, 2019 [22] 0.912 0.838 0.954 -
stomach Liu, 2018 [23] 0.981 0.925 0.995 .|
stomach Sakai, 2018 [25] 0.736 0.641 0.813 -
stomach Wu, 2019 [5] 0.940 0.873 0.973 =
stomach 0.751 0.579 0.869 N
-1.00 -0.50 0.00 0.50 1.00

» Fig.2 Forest plot, sensitivity.

(95% Cl 84.5-96.4), PPV was 91% (95% Cl 68.8-97.9) and NPV
was 94.3% (95% Cl 86.4-97.7).

Results are summarized in » Table 1. Forest plots are shown
in »Fig.1, » Fig.2, ,» Fig. 3, » Fig.4, and » Fig. 5.

Validation of meta-analysis results

Sensitivity analysis

To assess whether any one study had a dominant effect on the
meta-analysis, we excluded one study at a time and analyzed its
effect on the main summary estimate. On this analysis, no sin-
gle study significantly affected the outcome or the heterogene-
ity.

Heterogeneity

A large degree of between-study heterogeneity was expected
due to the broad nature of machine learning algorithms and
endoscopic optics included in this study. This is reflected in
our 12% values (»Table2). Our subgroup analysis based on tu-
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mor location did not affect the observed 1% values and there-
fore it can be said that tumor location was not a contributory
factor. Prediction interval statistics was not calculated due to
the expected large degree of heterogeneity and the fact that
the goal was not to provide precise point estimates.

Publication bias

Publication bias assessment largely depends on the sample size
and the effect size. A publication bias assessment was deferred
in this study due to the fact that the reported effects were inde-
pendent of the sample size. We, however, do not rule out the
possibility of potential publication bias in terms of negative
studies being less frequently published.

Quality of evidence

The quality of evidence was rated for results from the meta-a-
nalysis according to the GRADE working group approach [27].
Observational studies begin with a low-quality rating, and
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Specificity

Group by Study name Statistics for each study Event rate and 95% Cl
Gl site Event rate Lower limit Upper limit
colon Ahmad,2019 [11] 0.925 0.854 0.963 s |
colon Byrne, 2019 [2] 0.830 0.743 0.892 s 3
colon Chen, 2018 [13] 0.781 0.689 0.851 = B
colon Ito, 2018 [20] 0.890 0.812 0.938 .
colon Komeda, 2019wl [21] 0.979 0.922 0.995 |
colon Komeda, 2019nbi [21]  0.965 0.905 0.988 |
colon Komeda. 2019ce [21] 0.995 0.925 1.000 -
colon 0.924 0.845 0.964 <
esophagus Cai, 2019 [12] 0.854 0.771 0.911 .
esophagus Guo, 2019ai1 [15] 0.950 0.886 0.979 |
esophagus Guo, 2019ai2 [15] 0.999 0.669 1.000 —_—
esophagus Horie, 2018 [17] 0.790 0.699 0.859 =
esophagus Zhang, 2017 [26] 0.835 0.749 0.896 . |
esophagus Zhao, 2019 [6] 0.841 0.756 0.900 =
esophagus 0.873 0.743 0.942 > 4
stomach Cho, 2019ai1 [14] 0.983 0.927 0.996 . |
stomach Cho, 2019ai2 [14] 0.883 0.804 0.933 -
stomach Cho, 2019ai3 [14] 0.994 0.929 1.000 -
stomach Cho, 2019ai4 [14] 0.912 0.838 0.954 =
stomach Cho, 2019ai5 [14] 0.508 0.411 0.604 -
stomach Horiuchi, 2019 [18] 0.710 0.614 0.790 i
stomach Li, 2019 [22] 0.906 0.832 0.950 i
stomach Liu, 2018 [23] 0.989 0.932 0.998 -
stomach Sakai, 2018 [25] 0.988 0.932 0.998 -
stomach Wu, 2019 [5] 0.910 0.836 0.953 2
stomach 0.914 0.843 0.954 <
-1.00 -0.50 0.00 0.50 1.00

» Fig.3 Forest plot, specificity.

based on the risk of bias and heterogeneity, the quality of this
meta-analysis would be considered as low-quality evidence.

Discussion

To the best of our knowledge, this is the first systematic review
and meta-analysis assessing the accuracy parameters of convo-
lutional neural network (CNN) based computer aided diagnosis
of gastrointestinal lesions that includes esophageal, gastric and
colorectal data. Based on our analysis, CNN-based deep ma-
chine learning demonstrates high accuracy in image-based di-
agnosis of lesions in esophagus, stomach and colorectum.

A key finding of our study is that CNN achieved >90% NPV in
diagnosis of esophageal, gastric and colorectal lesions. The ma-
jority of the included studies evaluated performance of CNN in
experimental conditions and not in a real-life clinical scenario.
Prospective studies and real-time video analysis of endoscopic
images are lacking. Only high-quality images were used to train
the CNN. In a real clinical setting, less insufflation of air, post-
biopsy bleeding, halation, blur, defocus or mucus can all affect
an accurate CAD. There was variability in the choice of thresh-
old used to report sensitivity and specificity. There was lack in
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uniformity of validating the training process of the algorithm
before using it for testing.

A recent meta-analysis published by Liu et al [28] reported
similar diagnostic accuracy results for use of Al in prediction
and detection of colorectal polyps. They reported better per-
formance for Al under NBI and performance superior to that of
non-expert endoscopists. This study primarily differs in the re-
ported Al parameters for esophageal, gastric, and colorectal le-
sions. In addition, we did not include studies that primarily as-
sessed the nuances of mathematical formulae behind the CNN
algorithm and we did not include studies that used support
vector machine-based algorithm.

The strengths of this review lie in careful selection of studies
reporting on machine-based learning that is solely based on
CNN-based algorithms and avoiding other redundant studies.
The American Society of Gastrointestinal Endoscopy (ASGE) in
its second Preservation Incorporation of Valuable Endoscopic
Innovations (PIVI-2) declaration proposed a NPV threshold of
90% or greater for real-time optical diagnosis of diminutive
colorectal polyps using advanced endoscopic imaging [29].
We have demonstrated that CNN achieves this threshold in
CAD of gastrointestinal lesions regardless of their location.
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PPV
Group by Study name Statistics for each study Event rate and 95% Cl
Gl site Event rate Lower limit Upper limit
colon Byrne, 2019 [2] 0.900 0.824 0.945 B
colon Chen, 2018 [13] 0.896 0.819 0.942 B
colon Ozawa, 2018 [24] 0.930 0.860 0.966 B
colon 0.910 0.688 0.979 -
esophagus Cai, 2019 [12] 0.864 0.782 0.918 . |
esophagus Horie, 2018 [17] 0.390 0.300 0.489 4 -
esophagus  Zhang, 2017 [26] 0.721 0.625 0.800 1t
esophagus Zhao, 2019 [6] 0.819 0.731 0.883 E 3
esophagus 0.723 0.417 0.905 e
stomach Cho, 2019ai1 [14] 0.850 0.766 0.908 -
stomach Cho, 2019ai2 [14] 0.419 0.326 0.518 -
stomach Cho, 2019ai3 [14] 0.005 0.000 0.074 |
stomach Cho, 2019ai4 [14] 0.118 0.068 0.197 L o
stomach Cho, 2019ai5 [14] 0.511 0.414 0.607 -
stomach Hirasawa, 2018 [16] 0.306 0.224 0.403 -
stomach Horiuchi, 2019 [18] 0.823 0.736 0.886
stomach Ikenoyama, 2019 [19] 0.146 0.089 0.229 . o
stomach Li, 2019 [22] 0.906 0.832 0.950 =
stomach Wu, 2019 [5] 0.913 0.839 0.954 =
stomach 0.510 0.309 0.708 =
-1.00 -0.50 0.00 0.50 1.00
» Fig.4 Forest plot, PPV.
NPV
Group by Study name Statistics for each study Event rate and 95% ClI
Gl site Event rate Lower limit Upper limit
colon Byrne, 2019 [2] 0.970 0.911 0.990 |
colon Chen, 2018 [13] 0.915 0.842 0.956 ]
colon 0.943 0.864 0.977 <4
esophagus Cai, 2019 [12] 0.976 0.919 0.993 |
esophagus Horie, 2018 [17] 0.950 0.885 0.979 i
esophagus Zhang, 2017 [26] 0.844 0.760 0.903 .
esophagus Zhao, 2019 [6] 0.904 0.829 0.948 . |
esophagus 0.921 0.859 0.957 4
stomach Cho, 2019ai1 [14] 0.939 0.872 0.972 -
stomach Cho, 2019ai2 [14] 0.805 0.716 0.871 =
stomach Cho, 2019ai3 [14] 0.869 0.788 0.922 -
stomach Cho, 2019ai4 [14] 0.847 0.763 0.905 -
stomach Cho, 2019ai5 [14] 0.957 0.894 0.983 -
stomach Horiuchi, 2019 [18] 0.917 0.844 0.957 =
stomach Li, 2019 [22] 0.912 0.838 0.954 -
stomach Wu, 2019 [5] 0.938 0.870 0.972 -=
stomach 0.902 0.856 0.934 ¢
-1.00  -0.50 0.00 0.50 1.00

» Fig.5 Forest plot, NPV.
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» Table2 Summary of results.

Pooled rates Accuracy Sensitivity
Esophagus 87.2 87.1
(76-93.6) (69.4-95.3)
12=70 12=90
3 datasets 6 datasets
Stomach 85.8 75.1
(79.8-90.3) (57.9-86.9)
12=83 12=96
10 datasets 12 datasets
Colorectal 89.9 92.6
(82-94.6) (82.8-97)
1°=69 1°=88
4 datasets 8 datasets

Specificity PPV NPV

87.3 72.3 92.1
(74.3-94.2) (41.7-90.5) (85.9-95.7)
12=60 12=95 12=74

6 datasets 4 datasets 4 datasets
91.4 51 90.2
(84.3-95.4) (30.9-70.8) (85.6-93.4)
12=92 12=97 12-64

10 datasets 10 datasets 8 datasets
92.4 91 94.3
(84.5-96.4) (68.8-97.9) (86.4-97.7)
12=81 12=0 12=61

7 datasets 3 datasets 2 datasets

CNN, convolutional neural network, PPV, positive predictive value; NPV,negative predictive value

There are limitations to this study. The included studies were
not representative of the general population and community
practice, with studies being performed in an experimental en-
vironment. Our analysis had studies that were retrospective in
nature contributing to selection bias. To capture maximum
available data, we included six conference abstracts that have
not been published as full manuscripts yet. We were unable to
formally conduct a quality assessment, as there is no guidance
on how to appropriately score and report quality on items per-
taining to machine-based learning. Moreover, we considered
individual accuracy tables as independent of each other, which
does not reflect real-life case scenario.

Our analysis has the limitation of heterogeneity. We were
unable to statistically ascertain a cause for the observed het-
erogeneity. We hypothesize, however, that the observed het-
erogeneity is primarily due to the following variables: threshold
cut-off used, different training algorithm as well as the training
methodology employed, and the variability in endoscopic op-
tics (standard white-light, NBI, chromo-endoscopy). In addi-
tion, endoscopic optics differ in their diagnostic accuracy based
on the underlying gastrointestinal lesion being assessed. In
terms of algorithm training and testing, not all studies em-
ployed a validation step to fine-tune the algorithm. Therefore,
the possibility of over-fitting in the reported accuracy data is
possible.

We only included studies that evaluated the performance of
CNN-based algorithms and not others, such as support vector
machine algorithms (SVM). This is due to the inherent mathe-
matical differences in the algorithms that make CNNs highly
unique and superior performers when compared to SVMs, and
due to the fact that SVMs are less likely to be used for image
classification in the near future. Although the technology is ra-
pidly advancing in Al, we do not anticipate that CNN-based
deep learning will become obsolete before further real-life pro-
spective studies are reported. We do, however, anticipate rapid
technical improvements in CNN algorithms in terms of faster
processing times despite an increase in number of deep hidden
learning layers, and the implementation of positive reinforce-
ment in CNN learning that allows the algorithm to learn from
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its errors and encourages it to execute a correct neuron while
inhibiting a wrong one.

Conclusions

In conclusion, based on our meta-analysis, deep machine learn-
ing by means of CNN -based algorithms demonstrates high ac-
curacy in diagnosis of gastrointestinal lesions. Deep learning in
gastroenterology is in its infancy and is witnessing a rapid,
steep growth in terms of learning as well as technological de-
velopment. Future studies are needed to streamline the ma-
chine-learning process and define its role in the CAD of gastro-
intestinal neoplastic conditions in real-life clinical scenarios.
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