The Effect of Vitamin D Supplementation on Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials

Authors

Simin Shahvazi^{1,2}, Sepideh Soltani³, Seyed Mehdi Ahmadi⁴, Russell J. de Souza^{5,6,7}, Amin Salehi-Abargouei^{1,2}

Affiliations

- 1 Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2 Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 3 Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- 4 Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, Ontario, Canada
- 5 Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- 6 Department of Medicine, Faculty of Health Sciences, Chanchlani Research Centre, McMaster University, Hamilton, Ontario, Canada
- 7 Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada

Keywords

vitamin D, prostatic neoplasms, PSA response, mortality, systematic review, meta-analysis

received 23.02.2018 accepted 22.10.2018

Bibliography

DOI https://doi.org/10.1055/a-0774-8809 Published online: 6.12.2018 Horm Metab Res 2019; 51: 11–21 © Georg Thieme Verlag KG Stuttgart · New York ISSN 0018-5043

Correspondence

Amin Salehi-Abargouei, PhD Department of Nutrition Faculty of Health Sahid Sadoughi University of Medical Sciences Yazd 8915173160

Iran

Tel.: +98 35 38209100, Fax: +98 35 38209119 abargouei@hlth.mui.ac.ir abarqouei@qmail.com

ABSTRACT

Vitamin D has received attention for its potential to disrupt cancer processes. However, its effect in the treatment of prostate cancer is controversial. This study aimed to assess the effect of vitamin D supplementation on patients with prostate cancer. In the present study, PubMed, Scopus, ISI Web of Science, and Google Scholar were searched up to September 2017 for trials that evaluated the effect of vitamin D supplementation on prostate specific antigen (PSA) response, mortality, and its possible side effects in participants with prostate cancer. The DerSimonian and Laird inverse-weighted random-effects model was used to pool the effect estimates. Twenty-two studies (16 before-after and 6 randomized controlled trials) were found and included in the meta-analysis. The analysis of controlled clinical trials revealed that PSA change from baseline [weighted mean difference (WMD) = -1.66 ng/ml, 95 % CI: -0.69, 0.36, p = 0.543)], PSA response proportion (RP = 1.18, 95 % CI: 0.97, 1.45, p = 0.104) and mortality rate (risk ratio (RR) = 1.05, 95 % CI: 0.81-1.36; p = 0.713) were not significantly different between vitamin D supplementation and placebo groups. Single arm trials revealed that vitamin D supplementation had a modest effect on PSA response proportion: 19% of those enrolled had at least a 50% reduction in PSA by the end of treatment (95 % CI: 7 % to 31 %; p = 0.002). Although before-after studies showed that vitamin D increases the PSA response proportion, it does not seem that patients with prostate cancer benefit from high dose vitamin D supplementation and it should not be recommended for the treatment.

Introduction

Prostate cancer is the second most frequent cancer in men, world-wide [1]. In the United States of America and European countries, approximately 25 % of new cancer cases in men are due to prostate cancer [1,2]. The pathogenesis of this disease is complex. It is suggested that the growth of prostate cancer is highly dependent on circulating androgens, especially testosterone. In many cases, can-

cer has extended beyond the prostate gland at the time of diagnosis and primary hormone therapy cannot stop or slow its progression [3]. Before 2004, chemotherapy was not considered a viable treatment for this cancer, but after 2 trials, chemotherapy, especially using docetaxel, has been found to be effective [4, 5].

Several studies have investigated the therapeutic effect of nutritional supplements like pomegranate juice or extract pills [6,7] and green tea [8,9] on prostate cancer. Beyond the classic role of vitamin D

in regulating bone health [10], cardiometabolic risk factors [11, 12] and proper hormonal function [13, 14], vitamin D supplementation has attracted attention for its possible therapeutic effect on prostate cancer [15, 16] because some trials have shown that vitamin D supplementation reduces circulating androgens (including testosterone and dihydrotestosterone) [17], reduces PSA secretion and inhibits cell growth [18] of hormone-sensitive prostate cancer cell line (LNCaP cells) [19], and improves apoptosis [20]. Several clinical trials tried to investigate the effect of high dose vitamin D administration on prostate cancer, in recent years [18, 21, 22], however, the results are inconsistent. For instance, Schwartz et al. [23] and Morris et al. [24] could not show a significant response to vitamin D in combination with chemotherapy whereas Shamsedine et al. [21] and Beer et al. [25] observed a significant effect of vitamin D supplementation on Prostate-Specific Antigen (PSA) levels when accompanied with chemotherapy. In contrast, a study done by Srinivas et al. [26] was halted due to the results of a trial, using DN101 in combination of docetaxel because of a higher death rate in vitamin D supplemented group compared to placebo group.

According to our knowledge there has been no systematic review published of the effect of vitamin D supplementation on prostate cancer progression. In the present study, we review the published clinical evidence, and carry out a meta-analysis to quantify the effect of vitamin D supplementation on: 1) serum PSA levels; and 2) prostate cancer survival. In addition, we report on the toxicity and adverse events reported in these trials as a result of vitamin D administration in patients with prostate cancer.

Materials and Methods

The present systematic review is conducted and reported based on PRISMA guidelines. The study protocol was registered in the international prospective register of systematic reviews (PROSPERO) database (http://www.crd.york.ac.uk/PROSPERO, registration no: CRD42015015770).

Data sources and search strategy

We used the following 2 groups of MeSH and non-MeSH keywords for searching PubMed, Scopus, ISI web of science and Google scholar up to 10 September 2017: 1) "Vitamin D", "Ergocalciferols", "Cholecalciferol", "Calcitriol", "Calcifediol", "25-Hydroxyvitamin D 2", "25-hydroxyvitamin D", "1-25-dihydroxy-23,23-difluorovitamin D3, "25(OH)D, "25-OH vitamin D", "1,25(OH)(2)D, "1,25(OH)D, "1,25-(OH)(2) D(3)", "25-hydroxyvitamin D", "Vitamin D", "25-(OH)D(3)", "25-(OH)D(2)", "Vitamin D 3", "Vitamin D3", "Cholecalciferols, "Ergocalciferol", "Vitamin D 2", "Vitamin D2", "DN101" and 2) "Prostate", "Prostatic Neoplasms", "Prostatic Neoplasm", "Prostatic Cancer", "Cancer of Prostate", "Prostate Neoplasm", "prostate cancer", "prostate carcinoma", "gamma-Seminoprotein", "gamma Seminoprotein", "hK3 Kallikrein", "Semenogelase", "Kallikrein hK3", "Seminin", "Prostate Specific Antigen" and "PSA". No language, date, or study design filters were applied to our search. The reference list of retrieved primary and review articles were reviewed to identify studies possibly missed by our search strategy. All titles and abstracts were reviewed separately by 2 authors (SS and ASA) and any disagreement was resolved through discussion.

Eligibility criteria

All clinical trials (single group, parallel or cross over RCTs), which examined the effect of vitamin D supplementation on adult men with prostate cancer were included in the present systematic review.

Data extraction

Data on surname of the first author, publication date, sample size, participants' age, vitamin D dose used for supplementation, calcium restriction prescription, medications used for chemotherapy and their dose, number of participants with PSA response proportion (reduction of serum PSA level to lower than half of baseline level), mortality rate in treatment and control group, PSA change, and data on toxicity were extracted separately by 2 independent authors (SS and ASA).

Quality assessment

The Cochrane Collaboration's tool for risk of Bias assessment was used by 2 authors (SS and ASA) independently for assessment of the quality of the controlled clinical trials [27]. We judged the quality of the studies on the basis of 5 domains (random sequence generation, allocation concealment, blinding of outcome assessment, incomplete outcome data, and selective reporting). Each study was rated by the reviewers as being at low, high, or unclear risk of bias for each of the 5 domains. Studies, which were low risk according to at least 3 domains were considered as low risk-of-bias and those with 2 and lower than 2 low risk domains were regarded to be at some or and high risk-of-bias, respectively, [27]. All of the single group studies were classified as high risk, because they do not have a control group.

Statistical analysis

The sample size and number of patients with a PSA response proportion (defined as a reduction of serum PSA level to lower than half of baseline level) in the intervention group was used to calculate the PSA response proportion (as event rate). Event rates were transformed, and the event rate and corresponding standard error (SE) was used as the effect size in meta-analysis for single arm studies. For the controlled clinical trials, the response rate in the intervention and control group was used to calculate the risk ratio (response rate ratio), and the natural logarithm of the risk ratio and its corresponding SE was used for meta-analysis. We also computed mortality rate in each arm of randomized clinical trials to calculate the mortality rate ratio to be used as the effect size for meta-analysis. A number of controlled clinical trials also reported the effect of vitamin D on serum PSA levels for baseline and after intervention period. We calculated the mean change in serum PSA levels. As none of included studies reported standard deviation (SD) for baseline, after intervention and change in serum PSA levels at the same time, the SD for PSA change was calculated, assuming a correlation of 0.5 between baseline and post-intervention values.

The DerSimonian and Laird random-effects model was used to pool the effect estimates in all meta-analyses [28]. Statistical heterogeneity between studies was evaluated using Cochran's Q test and the I-squared statistic (I²) [29]. Sensitivity analyses were performed by recalculating the pooled effects after: 1) removing the highest-weighted study from a given analysis (the "leave-one-out" analysis) [30]; and 2) testing alternatives to the 0.5 correlation between baseline and post-treatment values, which were set to 0.1 and 0.9.

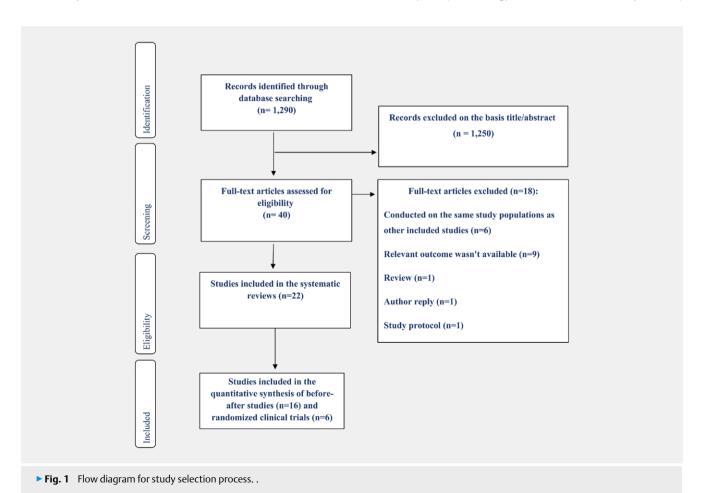
The potential for publication bias was assessed by visual inspection of funnel plots and using statistical tests of asymmetry, including Egger's regression asymmetry test and Begg's adjusted rank correlation test [31]. Statistical analyses were conducted using STATA version 11.2 (Stata Corp, College Station, TX, USA). p-Values less than 0.05 were considered as statistically significant for treatment differences; and less than 0.10 for assessments of publication bias and statistical heterogeneity.

Results

The literature search retrieved 1290 potentially-relevant citations. After screening titles/abstracts and removal of irrelevant records, 40 potentially related articles were selected and their full-text was assessed for eligibility. Eighteen reports were excluded because they were conducted on the same study populations as other included studies (n = 6) [19, 25, 32–35], did not provide relevant outcome (n = 9) [36–44], were review article (n = 1) [45], authors' reply (n = 1) [46] and study protocol (n = 1) [47]. Consequently, twenty-two studies [3, 15, 16, 18, 21–24, 26, 32, 35, 48–58] were included in the systematic review (▶ Fig. 1). Sixteen studies were single arm trial in design [3, 18, 21–24, 26, 32, 48–54, 56] and 6 were randomized controlled trials [15, 16, 35, 55, 57, 58]. The study characteristics for single group and randomized clinical trials are included in ▶ Tables 1 and ▶ 2 respectively. These papers have been published between 1995 and 2013; one of them was

conducted in Middle East [21] and 3 studies in the European continent [18, 22, 55] and the rest were conducted in North America [3, 15, 16, 23–26, 32, 35, 48, 49, 51–54, 56–58]. The sample size ranged from 14 to 953 patients with prostate cancer. Some studies examined the effect of vitamin D alone and the others administered chemotherapy drugs including docetaxel, naproxen, zoledronic acid, dexamethasone, carboplatin, and mitoxantrone along with vitamin D supplementation (**> Table 1, 2**).

Risk of bias across included studies


▶ Table 3 provides information on the risk of bias for each of the randomized controlled trials included in the present study. Only 6 studies were placebo controlled trial; therefore, we assessed for methodological quality using Cochrane collaboration's tool for assessing risk of bias [15, 16, 35, 55, 57, 58]. All eligible studies were low risk regarding 4 or more domains and were ranked as good quality.

Meta-analysis

Meta-analysis of controlled clinical trials

Prostate cancer progression

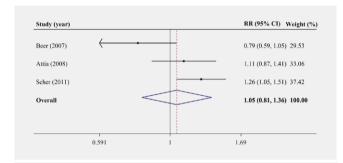
Out of 6 placebo controlled trials [15, 16, 35, 55, 57, 58], 3 studies with 1486 participants, examined the effect of vitamin D supplementation on serum PSA levels. Our analysis showed that the mean PSA change from baseline was not significantly different between vitamin D supplementation and placebo groups [weighted mean difference (WMD) = -1.66 ng/ml, 95 % CI: -0.69, 0.36, p = 0.543)

Shahvazi S et al. Vitamin D for Prostate Cancer... Horm Metab Res 2019; 51: 11–21

► Table 1 Main characteristics of single arm studies included in the systematic review.

Authors (year) [Ref]	Location	No. Partic- ipants	Age (median)	Vitamin D prescription	Calcium restric- tion diet	Chemotherapy or usage of other drugs	Results
Osborn et al. (1995) [48]	USA	4	77	1.5 µg of calcitriol daily, after 15 days 1 µg of calcitriol daily, after 28 days 1.5 µg of calcitriol daily	N _O	Type of chemotherapy not mentioned	No objective responses were observed
Liu et al. (2003) [49]	USA	26	70	12.5 µg 1a-OH-D2 (5 each of 2.5 µg capsules) continuous once a day before their AM meals	No	No chemotherapy regimens	No objective responses were observed
Beer et al. (2003) [50]	USA	39	73	Calcitriol 0.5 µg/kg was given orally in 4 divided doses over 4h on day 1	Yes	Docetaxel + Dexamethasone	Thirty of 37 patients (81 %; 95 % CI = 68–94 %) achieved a PSA response
Beer et al. (2003) [51]	USA	22	69	Calcitriol 0.5 µg/kg was given orally once a week orally once a week. Each weekly dose was divided into 4 doses and taken orally during each hour of a 4-h	Yes	Type of chemotherapy not mentioned	No objective responses were observed
Beer et al. (2004) [52]	USA	18	76	Calcitriol 0.5 µg/kg was given orally over a 4-h period.	Yes	Dexamethasone + Carboplatin	One of 17 patients (6%, 95% CI=0-28%) achieved a confirmed PSA response
Morris et al. (2004) [24]	USA	32	70	Calcitriol dose administered: 4, 6, 8, 10, 14, 20, 24, or 30 µg taken orally before bedtime on days 1, 2, and 3 of each week	No	Dexamethasone + Zoledronate	No objective responses were observed
Tiffany et al. (2005) [53]	USA	24	29	Calcitriol (60 µg as 0.5 g tablets) was given orally in 4 divided doses for 4h on day 1	N 0	Dexamethasone + Estramustine +Docetaxel + Aspirin +warfarin	Seven of the 22 patients (32%, 95% CI=12–51%) achieved a confirmed PSA response
Schwartz et al. (2006) [23]	USA	18	74	Paricalcitol i.v. 3 times per week on an escalating dose of 5 to 25 μg	No	Type of chemotherapy not mentioned	No objective responses were observed
Trump et al. (2006) [32]	USA	43	69	Calcitriol was administered weekly at a dose of 8µg for 1 month, and at a dose of 12 µg, for 1 month, at a dose of 10 µg every 3 days of a week	N 0	Dexamethasone	Eight of 43 patients (18.6%) (median decrease 64%; range, 55–92%) achieved a confirmed PSA response
Flaig et al. (2006) [54]	USA	40	72	0.5 μg of daily calcitriol added at the start of week 5	Yes	Dexamethasone + Carboplatin	13 of 34 treated patients (38.2%; 95% CI=22.2–56.4%) achieved a confirmed PSA response
Petrioli et al. (2007) [22]	Italy	26	89	Calcitriol (32 µg as 0.5 µg tablets) given orally in 3 divided doses on day 1	No	Docetaxel + Dexamethasone	Eight patients (31 %, 95 % CI = 16.5–50.1 %) achieved a confirmed PSA response
Chan et al. (2008) [56]	USA	19	70	180 μg of DN-101 on day 1	No	Mitoxantrone	Five of 19 patients (26%, 95% CI = 9–51%) achieved a confirmed PSA response
Newsom et al. (2009) [18]	Ϋ́	26	89	Most patients received vitamin D 25 µg once daily, 7 treated earlier in the study were given 10 µg once daily	No	Dexamethasone	Two patients (8 %) (95 % CI = 25–50 %) achieved a confirmed PSA response
Srinivas et al. (2009)[26]	USA	21	64	high dose calcitriol (DN101) (45 µg once per week)	Yes	Naproxen	No objective responses were observed
Chadha et al. (2010) [3]	NSA	18	89	Intravenous calcitriol on Day 2 of each week (74 $\mu g)$ over 1 h, 4 to 8 h	No	Dexamethasone	No objective responses were observed
Shamseddine et al. (2013) [21]	Lebanon	30	75	Calcitriol 0.5 µg/kg orally in 4 divided doses over 4h on day 1 of each treatment week	<u>8</u>	Docetaxel + Zoledronate	Eleven of 30 patients achieved a confirmed PSA response

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.


Chemotherapy Results or usage of other drugs	Not mentioned PSA change were not significant between intervention and control groups.	Dexametha- Vitamin D treatment was associated sone + Docetaxel with improved survival and PSA response	xel Daily doxercalciferol with weekly docetaxel did not enhance PSA response rate or survival	Dexametha- Vitamin D treatment was associated sone + Docetaxel with shorter survival than the control	Not mentioned PSA change were observed in 61%, 70%, and 81% of patients treated with 400, 10 000, and 40 000 IU/d of vitamin D3, respectively	Not mentioned PSA change was not significant between intervention and control
Duration Chemothera or usage of other drugs	12 weeks Not me	3 weeks of Dexametha- a 4-week sone + Docet cycle	A 4-week Docetaxel cycle	3 of every Dexametha- 4 weeks sone + Docet	4 weeks Not me	A 3- to Not me 8-week
Control group	Placebo capsules, daily	45μg placebo, orally on day 1	10 µg placebo, day 1–28	5 mg prednisone twice daily with 75 mg/m² docetaxel and 24 mg dexamethasone every 3 weeks	Patients in the control (nonrandomized) arm did not receive any supplemental vitamin D	Just observation
Vitamin D (intervention group)	150 µg a vitamin D3 analogue (BXL628)	45 μg vitamin D3 (DN-101) orally on day 1	10 µg doxercalciferol, day 1–28	45 µg a high-dose vitamin D3 (DN-101) orally on day 1, 8, and 15	Eligible patients were randomly allocated vitamin D3 doses: 1) 400 IU, 2) 10 000 IU and 3) 40 000 IU	10μg 1α-hydroxyvitamin D2, daily
Age	> 50	× 18	× 18	> 50	> 50	> 50
No. Partici- pants	116	250	70	953	99	31
Location	Italy	USA	USA	USA	USA	Canada
Authors (year) [Ref]	Colli et al. (2006) [55]	Beer et al. (2007) [15]	Attia et al. (2008) [16]	Scher et al. (2011) [35]	Wagner et al. (2013) [57]	Gee et al. (2013) [58]

► Table 2 Main characteristics of randomized controlled rials (RCTs) included in the meta-analysis.

▶ Table 3 Study quality and risk of bias assessment.a

First author (year) [Ref]	Sequence generation	Allocation concealment	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Score	Overall quality
Colli (2006) [55]	+	+	?	+	+	4	Good
Beer (2007) [15]	+	+	+	+	+	5	Good
Attia (2008)[16]	+	+	?	+	+	4	Good
Scher (2011) [35]	+	+	+	+	+	5	Good
Wagner (2013) [57]	-	+	?	+	+	3	Good
Gee (2013) [58]	+	+	?	+	+	4	Good

a+: Low risk; -: High risk; ?: Unclear.

▶ Fig. 2 Meta-analyses of randomized controlled clinical trials investigating the effect of vitamin D supplementation on mortality rate. Analysis was conducted using random effects model.

[55, 57, 58], with no evidence of heterogeneity between studies (Cochrane Q test, Q statistic = 1.97, p = 0.373, $I^2 = 0.0\%$, $\tau^2 = 0.0$). This result was not sensitive to the correlation coefficient selected to calculate the SD for change values.

Two trials investigated the effect of vitamin D supplementation on PSA response proportion [57, 58]. In these trials, vitamin D supplementation does not significantly affect PSA response proportion (RP = 1.18, 95 % CI: 0.97, 1.45, p = 0.104) and the heterogeneity was not significant (Cochrane Q test, Q statistic = 0.55, p = 0.46, $I^2 = 0.0\%$, $T^2 = 0.0$).

Mortality

The effect of vitamin D supplementation on mortality rate in patients with prostate cancer was assessed in 3 trials [15, 16, 35] with 1273 participants and 477 events including 224 deaths in the control groups and 253 deaths in the vitamin D supplemented group occurred for any cause during the follow-up. There were no significant differences in total mortality between participants receiving vitamin D supplementation and those receiving placebo [risk ratio (RR) = 1.05, 95 % CI: 0.81-1.36; p=0.713; Fig. 2, however, the heterogeneity between studies was high (Cochrane Q test, Q statistic = 7.34, p=0.025, $I^2=72.8\%$, $I^2=0.037$). When a study done by Beer et al. [15] was excluded in the sensitive analysis, the overall result was changes and the analysis on the two remaining clinical trials [16, 35] showed that vitamin D supplementation increases the risk of mortality by 19% (RR=1.19,

95 % CI: 1.03–1.38; p = 0.014) with no evidence of heterogeneity (Cochrane Q test, Q statistic=0.70, p=0.402, I^2 =0.0%, T^2 =0.0).

Toxicity

The possible side-effects related to vitamin D supplementation was reported in a number of included studies were also investigated [15, 16, 35]. Results of the meta-analyses on the risk ratio of side-effects are reported in **Table 4.** In total, side-effects were generally similar in vitamin D supplemented and control group; however, our analysis revealed that nausea and loss of taste were experienced more in in the vitamin D supplemented group compared to placebo group.

Publication bias


The funnel plot depicting the effect sizes against their corresponding error were symmetrical and the statistical asymmetry tests including Egger's and Begg's tests showed no evidence of publication bias for studies investigating the effect of vitamin D supplementation on serum PSA change from baseline (p-value for Egger's test = 0.441; p-value for Begg's test = 0.296) and mortality rate (p-value for Egger's test = 0.291; p-value for Begg's test = 0.296).

Meta-analysis of single arm clinical trials

The meta-analysis of 16 relevant trials with no control group [3, 18, 21–24, 26, 32, 48–54, 56] revealed a statically significant effect of vitamin D supplementation with or without chemotherapy medication on the improvement of prostate cancer in terms of PSA response proportion (the reduction in serum PSA levels) by 19% (Event rate = 0.19, 95 % CI: 0.07 – 0.30, p = 0.002) (► Fig. 3). Heterogeneity was high across the selected studies (Cochrane Q test, Q statistic = 153.51, degrees of freedom = 15, p < 0.001, $I^2 = 90.2\%$, $\tau^2 = 0.0517$). The subgroup analysis by co-therapies calcium restriction in the treatment period and the type of vitamin D supplemented for study attendants is illustrated in ▶ **Table 5**. dexamethasone (response proportion = 0.48, 95 % CI: 0.12–0.84, p = 0.008) Moreover, vitamin D supplements increased the PSA response proportion on a calcium-unrestricted diet (response proportion = 0.15, 95 % CI: 0.0.64-0.285, p = 0.001) [25, 26, 51, 52, 54]. In the subgroup meta-analysis categorized based on type of vitamin D, only calcitriol treatment significantly affected PSA response

▶ **Table 4** The meta-analysis of the specific side-effects of vitamin D versus placebo extracted from randomized controlled clinical trials.

	Number of	Number of	Risk ratio			ŀ	leterogeneity		
Adverse event	studies	participants	(95 % CI)	p	P	Q statistic	Degrees of freedom	Tau- squared	l ² (%)
Anemia	2	1203	0.920 (0.527-1.606)	0.769	0.569	0.32	1	0.0000	0.0
Diarrhea	3	1273	1.220 (0.689-2.159)	0.495	0.271	2.61	2	0.1009	23.4
Dyspnea	3	1203	1.247 (0.530-2.932)	0.613	0.192	3.30	2	0.2670	39.3
Fatigue	3	1273	0.852 (0.308-2.359)	0.758	0.033	6.82	2	0.4891	70.7
Leukopenia	3	1273	0.905 (0.677-1.210)	0.500	0.417	1.75	2	0.0000	0.0
Hyperglycemia	3	1273	0.904 (0.685-1.193)	0.475	0.409	1.79	2	0.0000	0.0
Hypercalcemia	2	1023	3.511 (0.580-21.242)	0.171	0.840	0.04	1	0.0000	0.0
Loss of taste	2	1203	1.365 (1.088–1.712)	0.007	0.385	0.75	1	0.0000	0.0
Nausea	3	1273	1.180 (1.021-1.364)	0.025	0.866	0.29	2	0.0000	0.0
Neutropenia	3	1273	0.615 (0.267–1.418)	0.254	0.075	5.19	2	0.3175	61.4

▶ Fig. 3 Forest plot describing the effect of vitamin D supplementation on PSA response proportion in single arm trials. Analysis was conducted using random effects model.

(response proportion = 0.23, 95 % CI: 0.07–0.40, p = 0.004) [3, 21, 22, 24, 25, 32, 48, 51–54].

Discussion

In this study, we found no convincing evidence of benefit of vitamin D supplements on serum PSA levels, PSA response proportion, or mortality. No effect on mortality was seen in studies of either design. We found that vitamin D modestly improves the PSA response proportion in single arm before-after studies, but not in randomized controlled trials. Further, the effect in the single arm studies was lower when limited to those trials, which administered vitamin D with calcium restriction prescription.

The protective effect vitamin D against developing prostate cancer was proposed by Schwartz and Hulka for the first time when they found that the risk of prostate cancer was elevated in the elderly with lower serum vitamin D levels [59]. Moreover, the inverse association between

sun exposure as a main source of vitamin D synthesis and risk of prostate cancer supported the hypothesis of protective effect of vitamin D against the development of prostate cancer [60–62]. In contrast, A meta-analysis of 21 observational studies found an elevated risk of prostate cancer in subjects with increased 25-hydroxyvitamin D levels and announced that vitamin D supplementation should be administered with caution [63]. Furthermore, a recent meta-analysis of 19 prospective cohort or nested case-control studies suggested per 10 ng/ml increment in circulating 25[OH]D concentration, the risk of prostate cancer was approximately 4% elevated [64]. Moreover, recent meta-analyses found the association between some race-related vitamin D receptors (VDR) polymorphisms (Taql, Fokl, Cdx2, Apal, Bsml) and an increased risk of prostate cancer [65–67]. It should be noted that the seasonal variation might also affect the association found between the vitamin D and prostate cancer [68], since the sun exposure is the most important source regulator of serum vitamin D [69].

Posadzki et al. [70] reviewed double-blind, placebo-controlled randomized clinical trials of non-herbal dietary supplements and vitamins for evidence of reducing PSA levels in prostate cancer patients. Only one double-blind, placebo-controlled trial [52] was identified, which concluded that dietary supplements including vitamin D are not effective treatments for patients with prostate cancer. A narrative review by Giammanco et al. [71] of vitamin D and cancer concluded that vitamin D and its analogues might be effective in preventing the progression of some type of cancer including breast cancer and prostate cancer but they also concluded that vitamin D therapy in patients with prostate cancer had no beneficial effect. In the present systematic review, we have included before-after studies and demonstrated that these studies might be misleading and their result are different from parallel double blind studies. Furthermore, we included 6 randomized clinical trials.

The present meta-analysis revealed that vitamin D supplementation not only is not beneficial for patients with prostate cancer but although it was not statistically significant, might increase the risk of overall mortality. A justifiable mechanism is that vitamin D supplementation increase IGF-1 concentrations, consistent with the hypothesis that IGF-1 may increase the risk of prostate cancer.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

► Table 5 Subgroup analysis as well as overall analysis of the effects of vitamin D supplementation on PSA response in single arm trials included in the meta-analysis.

Subaroun (Bof)	Number	Number of	Meta-analysis			Heterogeneity	eneity			p between
(ver)	of studies	participants	Event rate (95 % CI)	p Effect	Q statistic	Degree of freedom	p within group	12 (%)	Tau-squared	group
Chemotherapy drugs										
None	22	123	0.040 (0.017–0.105)	0.223	0.55	4	696.0	0.00	0.000	< 0.001
Docetaxel and Dexamethasone	С	72	0.484 (0.126-0.841)	0.008	29.71	2	0.00	93.3	0.092	
Zoledronate	,-	32	0.016 (0.001–0.118)	0.765	0.00	0	Ī	ı	0.000	
Dexamethasone and Carboplatin	2	58	0.220 (0.001-0.537)	0.173	8.15	1	0.004	87.7	0.045	
Dexamethasone	2	61	0.114 0.001-0.270)	0.150	2.62	1	0.106	61.8	0.007	
Mitoxantrone	-	19	0.263 (0.071-0.455)	0.007	0.00	0	I	ı	0.000	
Naproxen	-	21	0.026 (0.001-0.180)	0.738	0.00	0	Ī	ı	0.000	
Docetaxel and Zoledronate	-	30	0.478 (0.285-0.672)	0.000	0.00	0	Ī	ı	0.000	
Calcium restriction diet										
Yes	5	140	0.172 (0.1–0.281)	0.116	101.17	4	0.00	0.96	0.1321	0.001
No	1	276	0.150 (0.064-0.235)	0.001	35.08	10	0.00	71.5	0.0144	
Type of vitamin D treatment										
Calcitriol	11	306	0.239 (0.078-0.401)	0.004	133.90	10	0.000	92.5	0.068	0.004
Alfacalcidol		26	0.024 (0.001-0.167)	0.744	0.00	0	Ī	I	0.000	
Paricalcitol	-	18	0.026 (0.001-0.180)	0.738	0.00	0	Ī	I	0.000	
DN-101 (high-dose calcitriol)	2	40	0.138 (0.094-0.369)	0.245	3.56	-	0.059	71.9	0.020	
Ergocalciferol	_	56	0.080 (0.045-0.205)	0.209	0.00	0	Ī	I	0.000	
Overall	16	416	0.190 (0.072-0.308)	0.002	153.51	15	0.000	90.2	0.0517	

In a large clinical trial it was assumed that adding calcitriol to docetaxel might improve antitumor activity [15]. Vitamin D might be beneficial by offsetting the gastrointestinal toxicity of docetaxel, but this hypothesis needs conclusive evidence. Additional proposed mechanisms by which vitamin D may reduce toxicity include: effects on cell proliferation, gene expression, singling pathways, cell differentiation, apoptosis, autophagy, antioxidant defense and DNA repair, prostaglandin synthesis and metabolism, angiogenesis and an improved immune response [71]. The finding from microarray data analysis recently suggested that calcitriol via upregulation expression of prostaglandin catabolizing enzyme 15-prostaglandin dehydrogenase (PGDH) and down-regulation expression of the prostaglandin synthesizing enzyme cyclooxygenase-2 (COX-2) inhibits prostaglandin actions in prostate cancer cells growth [72-74]. But our results cannot prove these effects in prostatic cancer patients.

Our finding suggests that vitamin D supplements has beneficial effect on PSA response proportion following diets without calcium restriction. Gao et al. by meta-analysis of twelve 12 prospective studies concluded that dairy product and calcium intakes were directly associated with the risk of prostate cancer [75]. A high calcium consumption lead to increased risk of prostate cancer by inhibiting the bioactive metabolite of vitamin D [76, 77].

There are a number of limitations that should be considered while interpreting the results. One of the limitations is that the included studies did not report the baseline and the after intervention vitamin D status of the participants. The effect of vitamin D supplementation might be different in patients deficient in vitamin D. The other noticeable issue in the present meta-analysis is that before-after studies are highly misleading compared to randomized controlled clinical trials. For example, vitamin D modestly increases the PSA response proportion in single arm studies, however, the similar effect was not observed in randomized controlled trials. Also we should consider that most of studies were single arm and the only 6 double blind randomized clinical trials were included in our meta-analysis however these studies were powerful ones.

Conclusion

In this systematic review and meta-analysis, we found that vitamin D supplementation does not benefit patients with prostate cancer. High dose vitamin D supplementation for improving the disease state should not be recommended based on our results. The possible beneficial effects of vitamin D supplementation in deficient subjects with prostate cancer should be examined in the future investigations.

Authors' Contribution

SSh, SSo, and ASA contributed in conception, search, screening, and data extraction and revised the manuscript; ASA, SSh and SSo provided the first draft of the manuscript. ASA also contributed in statistical analysis. RJD and MA contributed in the data interpretation and critically revised the manuscript. All authors contributed to the study design and drafting of the manuscript.

Acknowledgements

The authors would like to thank the research council of Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences for financial support of this study.

Funding

The study was funded by Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. There was no external funding support.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

- [1] Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917
- [2] Storebjerg TM, Hoyer S, Kirkegaard P, Bro F, Orntoft TF, Borre M, Sorensen KD. Prevalence of the HOXB13 G84E mutation in danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU Int 2016; 118: 646–653
- [3] Chadha MK, Tian L, Mashtare T, Payne V, Silliman C, Levine E, Wong M, Johnson C, Trump DL. Phase 2 trial of weekly intravenous 1,25 dihydroxy cholecalciferol (calcitriol) in combination with dexamethasone for castration-resistant prostate cancer. Cancer 2010; 116: 2132–2139
- [4] Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351: 1502–1512
- [5] Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr., Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004; 351: 1513–1520
- [6] Freedland SJ, Carducci M, Kroeger N, Partin A, Rao JY, Jin Y, Kerkoutian S, Wu H, Li Y, Creel P, Mundy K, Gurganus R, Fedor H, King SA, Zhang Y, Heber D, Pantuck AJ. A double-blind, randomized, neoadjuvant study of the tissue effects of POMx pills in men with prostate cancer before radical prostatectomy. Cancer Prev Res (Philadelphia, Pa) 2013; 6: 1120–1127
- [7] Pantuck AJ, Leppert JT, Zomorodian N, Aronson W, Hong J, Barnard RJ, Seeram N, Liker H, Wang H, Elashoff R. Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clin Cancer Res 2006; 12: 4018–4026
- [8] Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 2006; 66: 1234–1240
- [9] Jian L, Xie LP, Lee AH, Binns CW. Protective effect of green tea against prostate cancer: A case-control study in southeast China. Int J Cancer 2004; 108: 130–135
- [10] Serra MC, Ryan AS. Influence of vitamin D and parathyroid hormone on bone and metabolic risk in women with previous gestational diabetes. Horm Metab Res 2016; 48: 497–502

- [11] Uzunova I, Kirilov G, Zacharieva S, Zlatareva N, Kalinov K. Does vitamin D Status correlate with cardiometabolic risk factors in adults with growth hormone deficiency? Horm Metab Res 2017; 49: 499–506
- [12] Sollid S, Hutchinson M, Fuskevåg O, Joakimsen R, Jorde R. Large individual differences in serum 25-hydroxyvitamin D response to vitamin D supplementation: Effects of genetic factors, body mass index, and baseline concentration. Results from a randomized controlled trial. Horm Metab Res 2016; 48: 27–34
- [13] Azadi-Yazdi M, Nadjarzadeh A, Khosravi-Boroujeni H, Salehi-Abargouei A. The effect of vitamin D supplementation on the androgenic profile in patients with polycystic ovary syndrome: A systematic review and meta-analysis of clinical trials. Horm Metab Res 2017; 49: 174–179
- [14] Ekström L, Storbjörk L, Björkhem-Bergman L. Genetic expression profile of vitamin D metabolizing enzymes in the first trimester. Horm Metab Res 2016; 48: 834–839
- [15] Beer TM, Ryan CW, Venner PM, Petrylak DP, Chatta GS, Ruether JD, Redfern CH, Fehrenbacher L, Saleh MN, Waterhouse DM. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: A report from the ASCENT Investigators. J Clin Oncol 2007; 25: 669–674
- [16] Attia S, Eickhoff J, Wilding G, McNeel D, Blank J, Ahuja H, Jumonville A, Eastman M, Shevrin D, Glode M. Randomized, double-blinded phase II evaluation of docetaxel with or without doxercalciferol in patients with metastatic, androgen-independent prostate cancer. Clin Cancer Res 2008; 14: 2437–2443
- [17] Kaeding J, Belanger J, Caron P, Verreault M, Belanger A, Barbier O. Calcitrol (1α , 25-dihydroxyvitamin D3) inhibits androgen glucuronidation in prostate cancer cells. Mol Cancer Therap 2008; 7: 380–390
- [18] Newsom-Davis TE, Kenny LM, Ngan S, King J, Waxman J. The promiscuous receptor. BJU Int 2009; 104: 1204–1207
- [19] Beer TM, Garzotto M, Park B, Mori M, Myrthue A, Janeba N, Sauer D, Eilers K. Effect of calcitriol on prostate-specific antigen in vitro and in humans. Clin Cancer Res 2006; 12: 2812–2816
- [20] Swamy N, Chen TC, Peleg S, Dhawan P, Christakos S, Stewart LV, Weigel NL, Mehta RG, Holick MF, Ray R. Inhibition of proliferation and induction of apoptosis by 25-hydroxyvitamin D3-3β-(2)-bromoacetate, a nontoxic and vitamin D receptor-alkylating analog of 25-hydroxyvitamin D3 in prostate cancer cells. Clin Cancer Res 2004; 10: 8018–8027
- [21] Shamseddine A, Farhat FS, Elias E, Khauli RB, Saleh A, Bulbul MA. High-dose calcitriol, docetaxel and zoledronic acid in patients with castration-resistant prostate cancer: A phase II study. Urol Int 2013; 90: 56–61
- [22] Petrioli R, Pascucci A, Francini E, Marsili S, Sciandivasci A, De Rubertis G, Barbanti G, Manganelli A, Salvestrini F, Francini G. Weekly high-dose calcitriol and docetaxel in patients with metastatic hormone-refractory prostate cancer previously exposed to docetaxel. BJU Int 2007; 100: 775–779
- [23] Schwartz GG, Hall MC, Stindt D, Patton S, Lovato J, Torti FM. Phase I/II study of 19-nor-1alpha-25-dihydroxyvitamin D2 (paricalcitol) in advanced, androgen-insensitive prostate cancer. Clin Cancer Res 2005; 11: 8680–8685
- [24] Morris MJ, Smaletz O, Solit D, Kelly WK, Slovin S, Flombaum C, Curley T, Delacruz A, Schwartz L, Fleisher M, Zhu A, Diani M, Fallon M, Scher HI. High-dose calcitriol, zoledronate, and dexamethasone for the treatment of progressive prostate carcinoma. Cancer 2004; 100: 1868–1875
- [25] Beer TM, Hough KM, Garzotto M, Lowe BA, Henner WD. Weekly high-dose calcitriol and docetaxel in advanced prostate cancer. Seminars Oncol 2001; 28: 49–55
- [26] Srinivas S, Feldman D. A phase II trial of calcitriol and naproxen in recurrent prostate cancer. Anticancer Res 2009; 29: 3605–3610
- [27] Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. New York: Wiley; 2011

- [28] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188
- [29] Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statist Med 2002; 21: 1539–1558
- [30] Egger M, Davey-Smith G, Altman D. Systematic reviews in health care: meta-analysis in context. Newc York: Wiley; 2008
- [31] Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634
- [32] Trump DL, Potter DM, Muindi J, Brufsky A, Johnson CS. Phase II trial of high-dose, intermittent calcitriol (1, 25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer 2006; 106: 2136–2142
- [33] Beer TM, Myrthue A, Garzotto M, O'Hara MF, Chin R, Lowe BA, Montalto MA, Corless CL, Henner WD. Randomized study of high-dose pulse calcitriol or placebo prior to radical prostatectomy. Cancer Epidemiol Prevent Biomark 2004; 13: 2225–2232
- [34] Beer TM, Lalani AS, Lee S, Mori M, Eilers KM, Curd JG, Henner WD, Ryan CW, Venner P, Ruether JD, Chi KN. C-reactive protein as a prognostic marker for men with androgen-independent prostate cancer: results from the ASCENT trial. Cancer 2008; 112: 2377–2383
- [35] Scher HI, Jia X, Chi K, de Wit R, Berry WR, Albers P, Henick B, Waterhouse D, Ruether DJ, Rosen PJ, Meluch AA, Nordquist LT, Venner PM, Heidenreich A, Chu L, Heller G. Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. J Clin Oncol 2011; 29: 2191–2198
- [36] Gross C, Stamey T, Hancock S, Feldman D. Treatment of early recurrent prostate cancer with 1, 25-dihydroxyvitamin D3 (calcitriol). J Urol 1998; 159: 2035–2040
- [37] Beer TM, Munar M, Henner WD. A Phase I trial of pulse calcitriol in patients with refractory malignancies. Cancer 2001; 91: 2431–2439
- [38] Muindi JR, Peng Y, Potter DM, Hershberger PA, Tauch JS, Capozzoli MJ, Egorin MJ, Johnson CS, Trump DL. Pharmacokinetics of high-dose oral calcitriol: Results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Therap 2002; 72: 648–659
- [39] Liu G, Oettel K, Ripple G, Staab MJ, Horvath D, Alberti D, Arzoomanian R, Marnocha R, Bruskewitz R, Mazess R. Phase I trial of 1α -hydroxyvitamin D2 in patients with hormone refractory prostate cancer. Clin Cancer Res 2002; 8: 2820–2827
- [40] Beer TM, Eilers KM, Garzotto M, Hsieh YC, Mori M. Quality of life and pain relief during treatment with calcitriol and docetaxel in symptomatic metastatic androgen-independent prostate carcinoma. Cancer 2004; 100: 758–763
- [41] Beer TM, Ryan CW, Venner PM, Petrylak DP, Chatta GS, Ruether JD, Chi KN, Young J, Henner WD. Intermittent chemotherapy in patients with metastatic androgen-independent prostate cancer. Cancer 2008; 112: 326–330
- [42] Beer TM, Venner PM, Ryan CW, Petrylak DP, Chatta G, Dean Ruether J, Chi KN, Curd JG, DeLoughery TG. High dose calcitriol may reduce thrombosis in cancer patients. Br J Haematol 2006; 135: 392–394
- [43] Woo TCS, Choo R, Jamieson M, Chander S, Vieth R. Pilot study: Potential role of vitamin D (cholecalciferol) in patients with PSA relapse after definitive therapy. Nutr Cancer 2005; 51: 3236
- [44] Beer T, Garzotto M, Henner W, Eilers K, Wersinger E. Intermittent chemotherapy in metastatic androgen-independent prostate cancer. Br | Cancer 2003; 89: 968–970
- [45] Beer TM. Development of weekly high-dose calcitriol based therapy for prostate cancer. In: Urologic Oncology: Seminars and Original Investigations. Amsterdam: Elsevier; 2003: 399–405
- [46] Altundag K, Altundag O, Morandi P, Gunduz M. High-dose calcitriol, zoledronate, and dexamethasone for the treatment of progressive prostate carcinoma. Cancer 2004; 101: 1101–1102

- [47] Beer TM. ASCENT: The androgen-independent prostate cancer study of calcitriol enhancing taxotere. BJU Int 2005; 96: 508–513
- [48] Osborn JL, Schwartz GG, Smith DC, Bahnson R, Day R, Trump DL. Phase II trial of oral 1, 25-dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. In: Urologic Oncology: Seminars and Original Investigations. Amsteradm: Elsevier; 1995: 195–198
- [49] Liu G, Wilding G, Staab MJ, Horvath D, Miller K, Dresen A, Alberti D, Arzoomanian R, Chappell R, Bailey HH. Phase II study of 1α -hydroxyvitamin D2 in the treatment of advanced androgen-independent prostate cancer. Clin Cancer Res 2003; 9: 4077–4083
- [50] Beer TM, Eilers KM, Garzotto M, Egorin MJ, Lowe BA, Henner WD. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J Clin Oncol 2003; 21: 123–128
- [51] Beer TM, Lemmon D, Lowe BA, Henner WD. High-dose weekly oral calcitriol in patients with a rising PSA after prostatectomy or radiation for prostate carcinoma. Cancer 2003; 97: 1217–1224
- [52] Beer TM, Garzotto M, Katovic NM. High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am J Clin Oncol 2004; 27: 535–541
- [53] Tiffany NM, Ryan CW, Garzotto M, Wersinger EM, Beer TM. High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: A phase I/II study. | Urol 2005; 174: 888–892
- [54] Flaig TW, Barqawi A, Miller G, Kane M, Zeng C, Crawford ED, Glodé LM. A phase II trial of dexamethasone, vitamin D, and carboplatin in patients with hormone-refractory prostate cancer. Cancer 2006; 107: 266–274
- [55] Colli E, Rigatti P, Montorsi F, Artibani W, Petta S, Mondaini N, Scarpa R, Usai P, Olivieri L, Maggi M. BXL628, a novel vitamin D3 analog arrests prostate growth in patients with benign prostatic hyperplasia: A randomized clinical trial. Eur Urol 2006; 49: 82–86
- [56] Chan JS, Beer TM, Quinn DI, Pinski JK, Garzotto M, Sokoloff M, Dehaze DR, Ryan CW. A phase II study of high-dose calcitriol combined with mitoxantrone and prednisone for androgen-independent prostate cancer. BJU Int 2008; 102: 1601–1606
- [57] Wagner D, Trudel D, Van der Kwast T, Nonn L, Giangreco AA, Li D, Dias A, Cardoza M, Laszlo S, Hersey K. Randomized clinical trial of vitamin D3 doses on prostatic vitamin D metabolite levels and ki67 labeling in prostate cancer patients. | Clin Endocrinol Metab 2013; 98: 1498–1507
- [58] Gee J, Bailey H, Kim K, Kolesar J, Havighurst T, Tutsch KD, See W, Cohen MB, Street N, LeVan L. Phase II open label, multi-center clinical trial of modulation of intermediate endpoint biomarkers by 1α -hydroxyvitamin D2 in patients with clinically localized prostate cancer and high grade pin. Prostate 2013; 73: 970–978
- [59] Schwartz GG, Hulka S. Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis). Anticancer Res 1990; 10: 807–1312
- [60] John EM, Dreon DM, Koo J, Schwartz GG. Residential sunlight exposure is associated with a decreased risk of prostate cancer. J Steroid Biochem Mol Biol 2004; 89: 549–552
- [61] Luscombe CJ, Fryer AA, French ME, Liu S, Saxby MF, Jones PW, Strange RC. Exposure to ultraviolet radiation: Association with susceptibility and age at presentation with prostate cancer. Lancet 2001; 358: 641–642

- [62] Rukin N, Zeegers M, Ramachandran S, Luscombe C, Liu S, Saxby M, Lear J, Strange R. A comparison of sunlight exposure in men with prostate cancer and basal cell carcinoma. Br J Cancer 2007; 96: 523
- [63] Xu Y, Shao X, Yao Y, Xu L, Chang L, Jiang Z, Lin Z. Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: new findings from an updated meta-analysis. J Cancer Res Clin Oncol 2014; 140: 1465–1477
- [64] Gao J, Wei W, Wang G, Zhou H, Fu Y, Liu N. Circulating vitamin D concentration and risk of prostate cancer: A dose-response meta-analysis of prospective studies. Therap Clin Risk Manage 2018; 14: 95–104
- [65] Fei X, Liu N, Li H, Shen Y, Guo J, Wu Z. Polymorphisms of vitamin D receptor gene taql susceptibility of prostate cancer: A meta-analysis. Oncotarq Therap 2016; 9: 1033
- [66] Kang S, Zhao Y, Liu J, Wang L, Zhao G, Chen X, Yao A, Zhang L, Zhang X, Li X. Association of vitamin D receptor fok I polymorphism with the risk of prostate cancer: A meta-analysis. Oncotarget 2016; 7: 77878–77889
- [67] Wang K, Wu G, Li J, Song W. Role of vitamin D receptor gene Cdx2 and Apa1 polymorphisms in prostate cancer susceptibility: A meta-analysis. BMC Cancer 2016: 16: 674
- [68] Porojnicu AC, Moan J. Cancer prognosis depends on season of diagnosis. In: Bjertness E (ed). Solar Radiation and Human Health Oslo: The Norwegian Academy of Science and Letters, 2008
- [69] Holick M. Vitamin D: Photobiology, metabolism, and clinical application. Endocrinology 1995; 990
- [70] Posadzki P, Lee MS, Onakpoya I, Lee HW, Ko BS, Ernst E. Dietary supplements and prostate cancer: A systematic review of double-blind, placebo-controlled randomised clinical trials. Maturitas 2013: 75: 125–130
- [71] Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Vitamin D in cancer chemoprevention. Pharmaceut Biol 2015; 53: 1399–1434
- [72] Krishnan AV, Shinghal R, Raghavachari N, Brooks JD, Peehl DM, Feldman D. Analysis of vitamin D-regulated gene expression in LNCaP human prostate cancer cells using cDNA microarrays. Prostate 2004; 59: 243–251
- [73] Moreno J, Krishnan AV, Feldman D. Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J Steroid Biochem Mol Biol 2005; 97: 31–36
- [74] Moreno J, Krishnan AV, Peehl DM, Feldman D. Mechanisms of vitamin D-mediated growth inhibition in prostate cancer cells: Inhibition of the prostaglandin pathway. Anticancer Res 2006; 26: 2525–2530
- [75] Gao X, LaValley MP, Tucker KL. Prospective studies of dairy product and calcium intakes and prostate cancer risk: A meta-analysis. J Natl Cancer Inst 2005; 97: 1768–1777
- [76] Giovannucci E. Dietary influences of 1, 25 (OH) 2 vitamin D in relation to prostate cancer: A hypothesis. Cancer Causes Control 1998; 9: 567–582
- [77] Chan JM, Giovannucci EL. Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiol Rev 2001; 23: 87–92