Ultraschall Med 2019; 40(06): 757-763
DOI: 10.1055/a-0628-6248
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Optoacoustic Imaging Detects Hormone-Related Physiological Changes of Breast Parenchyma

Optoakustische Bildgebung detektiert physiologische Veränderungen des Brustparenchyms in Abhängigkeit von Zyklusphasen
Oshaani Abeyakoon
1   Department of Radiology, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Stefan Morscher
2   Research and Development, iThera Medical GmbH, Munich, Germany
,
Nina Dalhaus
2   Research and Development, iThera Medical GmbH, Munich, Germany
,
Steven J. Ford
2   Research and Development, iThera Medical GmbH, Munich, Germany
,
Iosif A. Mendichovszky
3   Department of Radiology and Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Roido Manavaki
1   Department of Radiology, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Matthew Wallis
4   Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Penelope Moyle
4   Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Ramona Woitek
1   Department of Radiology, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Andrew Patterson
4   Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Turid Torheim
5   Li Ka Shing Centre, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
James Joseph
5   Li Ka Shing Centre, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Isabel Quiros Gonzalez
5   Li Ka Shing Centre, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Sarah Bohndiek
5   Li Ka Shing Centre, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Fiona J. Gilbert
1   Department of Radiology, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
› Author Affiliations
Further Information

Publication History

31 January 2018

18 April 2018

Publication Date:
07 June 2018 (online)

Abstract

Purpose Optoacoustic imaging with ultrasound (OPUS) can assess in-vivo perfusion/oxygenation through surrogate measures of oxy, deoxy and total hemoglobin content in tissues. The primary aim of our study was to evaluate the ability of OPUS to detect physiological changes in the breast during the menstrual cycle and to determine qualitative/quantitative metrics of normal parenchymal tissue in pre-/post-menopausal women. The secondary aim was to assess the technique’s repeatability.

Materials and Methods We performed a prospective ethically approved study in volunteers using OPUS (700, 800 and 850 nm wavelengths) in the proliferative/follicular and secretory phase of the menstrual cycle. Regions of interest (ROIs) were drawn on the most superficial region of fibroglandular tissue and same-day intra-observer repeatability was assessed. We used t-tests to interrogate differences in the OPUS measurements due to hormonal changes and interclass correlation coefficients/Bland-Altman plots to evaluate the repeatability of mean ROI signal intensities.

Results 22 pre-menopausal and 8 post-menopausal volunteers were recruited. 21 participants underwent repeatability examinations. OPUS intensity values were significantly higher (p < 0.0001) at all excitation wavelengths in the secretory compared to the proliferative/follicular phase. Post-menopausal volunteers showed similar optoacoustic values to the proliferative/follicular phase of pre-menopausal volunteers. The repeatability of the technique was comparable to other handheld ultrasound modalities.

Conclusion OPUS detects changes in perfusion/vascularity related to the menstrual cycle and menopausal status of breast parenchyma.

Zusammenfassung

Ziel Optoakustische Bildgebung mittels Ultraschall (OPUS) erlaubt die in-vivo Beurteilung von Perfusion/Oxygenierung mittels Surrogatmessungen von Oxy-, Deoxy- und totalem Hämoglobingehalt im Gewebe. Das vorrangige Ziel dieser Studie war es zu evaluieren, ob physiologische Veränderungen im Brustparenchym während des Menstruationszyklus nachweisbar sind und qualitative sowie quantitative Merkmale normalen Brustparenchyms in prä- und postmenopausalen Probandinnen zu bestimmen. Als weiteres Ziel wurde die Reproduzierbarkeit dieser Technik evaluiert.

Material und Methoden Die vorliegende prospektive Studie zur Evaluierung von OPUS (700, 800 und 850 nm Wellenlänge) an freiwilligen Probandinnen während der proliferativen/follikulären und sekretorischen Zyklusphasen wurde von der lokalen Ethikkommission positive beurteilt. Regions of interest (ROIs) wurden im oberflächlichsten fibroglandulären Gewebe gezeichnet und die Intraobserver-Reproduzierbarkeit wurde am selben Untersuchungstag beurteilt. Um Unterschiede zwischen OPUS-Messungen in Abhängigkeit von Zyklusphasen zu beurteilen, wurden t-Tests verwendet. Interklassen-Korrelationskoeffizienten/Bland-Altman Plots wurden verwendet um die Reproduzierbarkeit der mittleren ROI Signalintensität zu untersuchen.

Resultate 22 prämenopausale und 8 postmenopausale Probandinnen wurden rekrutiert. 21 Probandinnen unterzogen sich Reproduzierbarkeitstests. Unabhängig von der Exzitationswellenlänge waren OPUS Intensitätswerte während der sekretorischen Phase signifikant höher (p < 0,0001) als während der proliferativen/follikulären Phase. Die Messwerte in postmenopausalen Probandinnen glichen denen prämenopausaler Probandinnen während der proliferativen/follikulären Phase. Die Reproduzierbarkeit dieser Technik glich der anderer Ultraschallhandgeräte.

Zusammenfassung OPUS detektiert Veränderungen der Perfusion/Vaskularisation des Brustparenchyms in Abhängigkeit von Menstruationszyklus und Menopausenstatus.

 
  • References

  • 1 Menke J. Photoacoustic breast tomography prototypes with reported human applications. Eur Radiol 2015; 25: 2205-2213 
  • 2 Becker A, Masthoff M, Claussen J. et al. Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach. Eur Radiol 2017; 28: 602-609 
  • 3 Diot G, Metz S, Noske A. et al. Multi-Spectral Optoacoustic Tomography (MSOT) of human breast cancer. Clin Cancer Res 2017; 23: 6912-6922
  • 4 Fakhrejahani E, Torii M, Kitai T. et al. Clinical Report on the First Prototype of a Photoacoustic Tomography System with Dual Illumination for Breast Cancer Imaging. PLoS One. United States 2015; 10: e0139113
  • 5 Li X, Heldermon CD, Yao L. et al. High resolution functional photoacoustic tomography of breast cancer. Med Phys [Internet] 2015; 42: 5321-5328
  • 6 Heijblom M, Piras D, van Den Engh FM. et al. The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies. European Radiology 2016; 1-14
  • 7 Neuschler EI, Butler R, Young CA. et al. A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and Malignant Breast Masses: A New Evaluation Tool for Radiologists. Radiology. United States 2017; 27: 172228
  • 8 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. Elsevier 2011; 144: 646-674
  • 9 Valluru KS, Wilson KE, Willmann JK. Photoacoustic Imaging in Oncology: TranslationalPreclinical and Early Clinical Experience. Radiology 2016; 280: 332-349
  • 10 Lundgren K, Holm C, Landberg G. Hypoxia and breast cancer : prognostic and therapeutic implications. Cell Mol Life Sci 2007; 64: 3233-3247
  • 11 Semenza GL. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim Biophys Acta 2016; [cited 2016 Feb 9] 1863: 382-391
  • 12 Vogel PM, Georgiade NG, Fetter BF. et al. The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol 1981; 104: 23-34
  • 13 Longacre TA, Bartow SA. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am J Surg Pathol. United States 1986; 10: 382-393
  • 14 Kuhl CK, Bieling HB, Gieseke J. et al. Healthy premenopausal breast parenchyma in dynamic contrast-enhanced MR imaging of the breast: normal contrast medium enhancement and cyclical-phase dependency. Radiology 1997; 203: 137-144
  • 15 Kang SS, Ko EY, Han BK. et al. Background parenchymal enhancement on breast MRI: Influence of menstrual cycle and breast composition. J Magn Reson Imaging 2014; 39: 526-534
  • 16 Amarosa AR, McKellop J, Klautau Leite AP. et al. Evaluation of the kinetic properties of background parenchymal enhancement throughout the phases of the menstrual cycle. Radiology 2013; 268: 356-365
  • 17 Partridge SC, McKinnon GC, Henry RG. et al. Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI. J Magn Reson Imaging 2001; 14: 433-438
  • 18 Rzymski P, Skorzewska A, Opala T. Changes in ultrasound shear wave elastography properties of normal breast during menstrual cycle. Clin Exp Obstet Gynecol. Italy 2011; 38: 137-142
  • 19 Pogue BWW, Jiang S, Dehghani H. et al. Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J Biomed Opt [Internet] 2004; 9: 541-552
  • 20 Ntziachristos V. Going deeper than microscopy : the optical imaging frontier in biology. Nat Publ Gr 2010; 7: 603-614
  • 21 Beard P. Biomedical photoacoustic imaging: a review. Interface Focus 2011; 1: 602-631
  • 22 Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. Elsevier 2016; 15: 155-163
  • 23 Ferraioli G, Tinelli C, Lissandrin R. et al. Ultrasound point shear wave elastography assessment of liver and spleen stiffness: effect of training on repeatability of measurements. Eur Radiol 2014; 24: 1283-1289
  • 24 Baumer TG, Davis L, Dischler J. et al. Shear wave elastography of the supraspinatus muscle and tendon: Repeatability and preliminary findings. J Biomech 2017; 53: 201-204
  • 25 Xiang X, Yan F, Yang Y. et al. Quantitative Assessment of Healthy Skin Elasticity: Reliability and Feasibility of Shear Wave Elastography. Ultrasound Med Biol 2017; 43: 445-452
  • 26 Cox B, Laufer JG, Arridge SR. et al. Quantitative spectroscopic photoacoustic imaging : a review Quantitative spectroscopic photoacoustic imaging. J Biomed Opt 2012; 17: 0621202
  • 27 Brochu FM, Brunker J, Joseph J. et al. Towards Quantitative Evaluation of Tissue Absorption Coefficients Using Light Fluence Correction in Optoacoustic Tomography. IEEE Trans Med Imaging 2017; 36: 322-331