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ABSTRACT

Over the last two decades genetic testing for mutations in

BRCA1 and BRCA2 has become standard of care for women

and men who are at familial risk for breast or ovarian cancer.

Currently, genetic testing more often also includes so-called

panel genes, which are assumed to be moderate-risk genes

for breast cancer. Recently, new large-scale studies provided

more information about the risk estimation of those genes.

The utilization of information on panel genes with regard to

their association with the individual breast cancer risk might

become part of future clinical practice. Furthermore, large ef-

forts have been made to understand the influence of common

genetic variants with a low impact on breast cancer risk. For

this purpose, almost 450000 individuals have been geno-

typed for almost 500000 genetic variants in the OncoArray

project. Based on first results it can be assumed that – togeth-

er with previously identified common variants – more than

170 breast cancer risk single nucleotide polymorphisms can

explain up to 18% of familial breast cancer risk. The knowl-

edge about genetic and non-genetic risk factors and its imple-

mentation in clinical practice could especially be of use for in-

dividualized prevention. This includes an individualized risk

prediction as well as the individualized selection of screening

methods regarding imaging and possible lifestyle interven-

tions. The aim of this review is to summarize the most recent

developments in this area and to provide an overview on

breast cancer risk genes, risk prediction models and their uti-

lization for the individual patient.
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ZUSAMMENFASSUNG

In den letzten 2 Jahrzehnten wurden genetische Testungen

zur Erkennung von BRCA1- und BRCA2-Mutationen Teil der

Standardversorgung für Personen mit einem erhöhten fami-

liären Risiko, an Brust- oder Eierstockkrebs zu erkranken. Zur-

zeit wird bei genetischen Testungen immer öfters auch nach

Mutationen in sogenannten Panel-Genen gesucht, von denen

angenommen wird, dass sie mit einem mittleren Erkran-

kungsrisiko für Brustkrebs einhergehen. Vor Kurzem wurden

die Ergebnisse neuer großangelegter Studien publiziert, die

mehr Informationen über die Risikoabschätzung für diese Ge-

ne bieten. Die Nutzung dieses neuen Wissens über Panel-Ge-

ne und des damit verbundenen individuellen Erkrankungsrisi-

kos könnte in Zukunft klinischer Alltag sein. Dazu kommt,

dass auch große Anstrengungen unternommen wurden, um

den Einfluss häufig vorkommender genetischer Varianten,

die nur geringe Auswirkungen auf das Brustkrebsrisiko haben,

zu verstehen. Zu diesem Zwecke wurde im Zuge des

OncoArray-Projekts eine Genotypisierung von annähernd

500000 genetischen Varianten bei fast 450000 Personen vor-

genommen. Basierend auf den ersten Zwischenergebnissen

wird nun angenommen, dass es zusammen mit den bereits

zuvor identifizierten häufig vorkommenden Varianten mehr

als 170 Einzelnukleotid-Polymorphismen gibt, die ein Brust-

krebsrisiko bergen und die bis zu 18% des familiären Risikos,

an Brustkrebs zu erkranken, erklären können. Die Umsetzung

des Wissens von genetischen und nicht genetischen Risikofak-

toren in die klinische Praxis könnte besonders für individuelle

Präventionsmaßnahmen von Nutzen sein. Hierzu zählen so-

wohl die individuelle Risikovorhersage, die individualisierte

Auswahl von bildgebenden Verfahren für Vorsorgeunter-

suchungen sowie potenzielle Lebensstil-Interventionen. Ziel

dieses Artikels ist es, die neuesten Entwicklungen auf diesem

Gebiet zusammenzufassen sowie einen Überblick über Brust-

krebsrisikogene, Risikovorhersagemodelle und deren Nutzen

für individuelle Patientinnen zu geben.

GebFra Science | Review
Genetic Variants of High and Moderate
Penetrance

With technical advances, continuously falling genotyping costs
and easier access to databases for the interpretation of genotyp-
ing results, genetic testing is on the verge of a broader implemen-
tation in clinical practice. Testing for BRCA1 and BRCA2 is already
part of clinical routine testing according to current guidelines [1,
2]. Further genes belong to a so-called panel testing [2] and seem
– under trial conditions – not to be harmful with regard to clinical
decisions based on the availability of those results [3]. While many
of these genes have a function in the context of homologous re-
pair (BRCA1/2, BARD1, BRIP1, PALB2, RAD51C/D, NBN, MRE11, ATM),
others have been described to come out of a different or to have
an additional functional context (TP53, PTEN, STK11, CDH1, CHEK2,
ATM, MLH1, MSH2, MSH6, PMS2).

A broader application of genetic testing might be problematic
with regard to several considerations. One aspect is the knowl-
edge about risk effects and clinical implications: Most of the mu-
tations in panel genes are rare. CHEK2 is the most frequently mu-
tated gene after BRCA1/2 and has mutation frequencies in breast
cancer patients of about 1.5% and in healthy individuals of about
0.65% [4]. All other mutations are observed less frequently.
Therefore, in these mutations an interpretation with regard to
breast cancer risk and clinical implications (e.g. therapy efficacy
or prognosis) is more difficult than in BRCA1/2. The discussion
concerning the prognostic relevance of BRCA1/2, for instance, is
still ongoing [5,6], which makes it clear that respective knowl-
edge is specifically missing even more in rarer panel genes. Large
studies in triple negative breast cancer (TNBC) also do not yield a
high enough sample size to address the clinical meaning of panel
genes other than BRCA1/2 in this patient population [7]. Another
aspect is that an increase of genetic testing also leads to an in-
crease of genetic test results that have to be interpreted as vari-
ants of uncertain significance [8]. These examples illustrate that
482
still a lot of knowledge has to be acquired before these genes can
be added to routine treatment or screening recommendations.

However, the interpretation of genetic variants becomes easier
with genetic information from large databases being available for
approved research projects. Examples for these datasets and da-
tabases are the Exome Aggregation Consortium (ExAC) [9], the
FLOSSIES dataset [10], The Cancer Genome Atlas (TCGA) [11] or
the database of Genotypes and Phenotypes (dbGaP) [12]. There
are several examples on how these data are used for risk calcula-
tions of rarer panel genes [4,13,14]. A large study with more than
65000 breast cancer patients and healthy women provided odds
ratios with reasonable confidence intervals for the majority of the
currently used panel genes (▶ Table 1). Furthermore, information
about the interpretation of test results in clinical practice is also
easier to access as findings are provided in structured databases
such as the database on clinical variations (ClinVar) [15] or the
Genetic Testing Registry (GTR) [17], or are directly exchanged be-
tween clinicians and researchers in large international consortia
like ENIGMA (Evidence-based Network for the Interpretation of
Germline Mutant Alleles) [16]. With regard to unclassified vari-
ants, improved in vitro experiments might help in shortening the
time frames in which their functional meaning can be assessed
[18].

As poly ADP-ribose polymerase (PARP) inhibitors have been ap-
proved for the treatment of BRCA1/2 mutated advanced breast
cancer patients [19], genetic testing could be performed in this
patient population. In a recent study mutation frequencies of an
unselected cohort of advanced breast cancer patients have been
described for BRCA1/2 and other panel genes [20], which could
help in deciding what kind of specified patient collective should
be screened for genetic testing. Information about therapy effi-
cacy of chemotherapy, PARP inhibitors or immunotherapies is still
completely missing regarding the other panel genes.
Wunderle M et al. Risk, Prediction and… Geburtsh Frauenheilk 2018; 78: 481–492



▶ Table 1 Panel genes for breast cancer.

Gene Mutation frequency Risk for breast cancer

BRCA1 15.9 [103]* 72% (95% CI, 65–79%) risk at age 80 [104]

BRCA2 8.3 [103]* 69% (95% CI, 61–77%) risk at age 80 [104]

TP53 1 :5000–1 :20000** 50–90% lifetime risk [105]

PTEN 1 :200000** 50–85% lifetime risk [106]

STK11 1 :8000–1 :200000** 32–54% lifetime risk [107]

CDH1 Unknown** 52% risk of lobular breast cancer at age 75 [108]

PALB2 0.80 [4]*** OR 7.46 (95% CI, 5.12–11.19; p = 4.31 × 10−38) lifetime risk [4]

RAD51D 0.07 [4]*** OR 3.07 (95% CI, 1.21–7.88; p = 0.01) lifetime risk [4]

ATM 0.94 [4]*** OR 2.78 (95% CI, 2.22–3.62; p = 2.42 × 10−19) lifetime risk [4]

CHEK2 1.46 [4]*** OR 2.26 (95% CI, 1.89–2.72; p = 1.75 × 10−20) lifetime risk [4]

BARD1 0.18 [4]*** OR 2.16 (95% CI, 1.31–3.63; p = 2.26 × 10−3) lifetime risk [4]

MSH6 0.21 [4]*** OR 1.93 (95% CI, 1.16–3.27; p = 0.01) lifetime risk [4]

BRIP1 0.25 [4]*** OR 1.63 (95% CI, 1.11–2.41; p = 0.01) lifetime risk [4]

MSH2 0.06 [4]*** OR 2.46 (95% CI, 0.81–6.93; p = 0.11) lifetime risk [4]

MLH1 0.03 [4]*** OR 1.15 (95% CI, 0.30–4.19; p > 0.99) lifetime risk [4]

NBN 0.17 [4]*** OR 1.13 (95% CI, 0.73–1.75; p = 0.59) lifetime risk [4]

MRE11A 0.07 [4]*** OR 0.86 (95% CI, 0.46–1.57; p = 0.65) lifetime risk [4]

PMS2 0.11 [4]*** OR 0.82 (95% CI, 0.44–1.47; p = 0.56) lifetime risk [4]

RAD51C 0.09 [4]*** OR 0.78 (95% CI, 0.47–1.37; p = 0.43) lifetime risk [4]

* Mutation frequency in German high risk families with breast and/or ovarian cancer according to the family criteria of the German Consortium
for Hereditary Breast and Ovarian Cancer.

** Mutation frequency in the general population.

*** Mutation frequency in Northern American families with breast, ovarian, colorectal or pancreatic cancer.

Abbreviations: OR: odds ratio; CI: confidence interval.
Genetic Variants of Low Penetrance
Up to 2013 a total of 26 single nucleotide polymorphisms (SNPs;
common variants) had been discovered by several independent
genome wide association studies (GWAS) and one SNP in CASP8
by a candidate gene approach [21–34]. These common variants
explain up to 9% of the excess of familial breast cancer. Together
with high penetrance mutations in genes like BRCA1, BRCA2, PALB2
and further alleles in moderate-risk genes like ATM, CHEK2 and
others, another ~ 20% could be explained, so that taken together
at that time up to 29% of familial breast cancer could be explained
[33].

After the validation of these 27 common variants an unparal-
leled effort was made to join more than 55000 breast cancer
patients and 53000 healthy women with germline DNA and clini-
cal data available to identify and validate further common vari-
ants. For that purpose, the Collaborative Oncological Gene-en-
vironment Study (COGS; https://www.nature.com/icogs/) was
formed designing an Illumina custom iSelect SNP genotyping ar-
ray (iCOGS array) comprising more than 210000 SNPs selected
from previous GWAS and candidate gene nominations [35]. This
project increased the number of validated common risk variants
first to 77 [35–38] and by a further meta-analysis together with
other GWAS to a total of 102 SNPs [39]. With these loci ~ 16% of
Wunderle M et al. Risk, Prediction and… Geburtsh Frauenheilk 2018; 78: 481–492
familial breast cancer risk could be explained with common risk
variants.

With about 36% (20% due to higher penetrance alleles and
16% due to common risk variants) of familial breast cancer risk ex-
plainable, further genetic risk factors have to be assumed to com-
plete the knowledge about familial breast cancer risk. One of the
most recent efforts is the OncoArray network [40] (https://epi.
grants.cancer.gov/oncoarray/). In this further attempt a chip with
more than 530000 SNPs was constructed. These SNPs comprised
about 230000 SNPs serving as a GWAS backbone. Further about
330000 SNPs were selected by several consortia (TRICL, BCAC/
DRIVE/CIMBA, FOCI/OCAC, ELLIPSE/PRACTICAL and CORECT) for
several reasons (e.g. fine-mapping, SNPs from existing GWAS,
rare variants, candidate SNPs, SNPs from relevant tumor genes,
functional SNPs, SNPs associated with survival) [40]. Of those
SNPs more than 494000 passed quality control and more than
447000 samples were successfully genotyped from patients with
breast, colon, lung, ovary and prostate cancer as well as from
healthy women in the control group. With these data a genome
wide association study could be performed with more than
137000 breast cancer patients and more than 119000 healthy
women. This revealed an additional 75 common variants that
could be validated as breast cancer risk loci [41,42]. We have
summarized all validated risk SNPs in ▶ Table 2, along with the
483



▶ Table 2 Validated SNPs in sporadic breast cancer.

Region; Closest Gene SNP-Number (MAF) OR (95% CI), Citation

1p36.22; PEX14 rs616488 (0.33) 0.94 (0.92–0.96) [35]

1p36.13; KLHDC7A rs2992756 (0.49) 1.06 (1.04–1.08) [41]

1p34.2; HIVEP3 rs79724016 (0.03) 0.93 (0.88–0.97) [41]

1p34.2 rs4233486 (0.36) 0.97 (0.95–0.98) [41]

1p34.1; PIK3R3 rs1707302 (0.34) 0.96 (0.95–0.98) [41]

1p32.3 rs140850326 (0.49) 0.97 (0.95–0.99) [41]

1p22.3 rs17426269 (0.15) 1.05 (1.02–1.07) [41]

1p13.2; AP4B1,
DCLRE1B

rs11552449 (0.17) 1.07 (1.04–1.10) [35]

1p12 rs7529522 (0.23) 1.06 (1.04–1.08) [41]

1p11.2; EMBP1 rs11249433 (0.40) 1.09 (1.07–1.11)
[27,35]

1q21.1; NBPF10,
RNF115

rs12405132 (0.36) 0.95 (0.93–0.97) [39]

1q21.2; OTUD7B rs12048493 (0.34) 1.07 (1.05–1.10) [39]

1q22; TRIM46 rs4971059 (0.35) 1.05 (1.03–1.07) [41]

1q32.1;MDM4 rs4245739 (0.26) 1.02 (1.00–1.04) [38]

1q32.1; LGR6 rs6678914 (0.41) 1.00 (0.98–1.02) [38]

1q32.1; PHLDA3 rs35383942 (0.06) 1.12 (1.08–1.17) [41]

1q41; ESRRG rs11117758 (0.21) 0.95 (0.93–0.97) [41]

1q43; EXO1 rs72755295 (0.03) 1.15 (1.09–1.22) [39]

2p25.1; GRHL1 rs113577745 (0.10) 1.08 (1.05–1.11) [41]

2p24.1 rs12710696 (0.36) 1.04 (1.01–1.06) [38]

2p23.3; ADCY3 rs6725517 (0.41) 0.96 (0.94–0.98) [41]

2p23.3; NCOA1 rs200648189 (0.19) 0.94 (0.91–0.97) [42]

2q13; BCL2L11 rs71801447 (0.06) 1.09 (1.05–1.13) [41]

2q14.2 rs4849887 (0.10) 0.91 (0.88–0.94) [35]

2q31.1; CDCA7 rs1550623 (0.16) 0.94 (0.92–0.97) [35]

2q31.1;METAP1D,
DLX1, DLX2

rs2016394 (0.48) 0.95 (0.93–0.97) [35]

2q33.1; CASP8 rs1045485 (0.13) 0.97 (0.94–1.00)
[21,35]

2q35; LOC101928278,
LOC105373874

rs13387042 (0.47) 0.88 (0.86–0.90)
[24,35,109]

2q35; DIRC3 rs16857609 (0.26) 1.08 (1.06–1.10) [35]

2q36.3 rs12479355 (0.21) 0.96 (0.94–0.98) [41]

3p26.2; ITPR1, EGOT rs6762644 (0.40) 1.07 (1.04–1.09) [35]

3p24.1; SLC4A7 rs4973768 (0.47) 1.10 (1.08–1.12)
[26,35]

3p24.1; TGFBR2 rs12493607 (0.35) 1.06 (1.03–1.08) [35]

3p21.3 rs6796502 (0.09) 0.92 (0.89–0.95) [39]

3p13; FOXP1 rs6805189 (0.48) 0.97 (0.95–0.99) [41]

3p12.1; VGLL3 rs13066793 (0.09) 0.94 (0.91–0.97) [41]

3p12.1; CMSS1, FILIP1L rs9833888 (0.22) 1.06 (1.04–1.08) [41]

3q23; ZBTB38 rs34207738 (0.41) 1.06 (1.04–1.08) [41]

3q26.31 rs58058861 (0.21) 1.06 (1.04–1.09) [41]

4p14 rs6815814 (0.26) 1.06 (1.04–1.08) [41]

4q21.23; HELQ rs84370124 (0.47) 1.04 (1.02–1.05) [41]

▶ Table 2 Validated SNPs in sporadic breast cancer. (Continued)

Region; Closest Gene SNP-Number (MAF) OR (95% CI), Citation

4q22.1;
LOC105369192

rs10022462 (0.44) 1.04 (1.02–1.06) [41]

4q24; TET2 rs9790517 (0.23) 1.05 (1.03–1.08) [35]

4q28.1 rs77528541 (0.13) 0.95 (0.92–0.97) [41]

4q34.1; ADAM29 rs6828523 (0.13) 0.90 (0.87–0.92) [35]

5p15.33; TERT rs10069690 (0.26) 1.06 (1.04–1.09)
[32,35]

5p15.33; TERT rs2736108 (0.29) 0.94 (0.92–0.95) [36]

5p15.33; AHRR rs116095464 (0.05) 1.06 (1.02–1.10) [41]

5p15.1; LOC401176 rs13162653 (0.45) 0.95 (0.93–0.97) [39]

5p13.3; SUB1 rs2012709 (0.46) 1.05 (1.03–1.08) [39]

5p12 rs10941679 (0.25) 1.13 (1.10–1.15)
[25,35]

5q11.1 rs35951924 (0.32) 0.95(0.93–0.97) [41]

5q11.1 rs72749841 (0.16) 0.93(0.91–0.96) [41]

5q11.2;MAP3K1 rs889312 (0.28) 1.12 (1.10–1.15)
[22,35]

5q11.2; RAB3C rs10472076 (0.38) 1.05 (1.03–1.07) [35]

5q12.1; PDE4D rs1353747 (0.10) 0.92 (0.89–0.95) [35]

5q14; ATG10 rs7707921 (0.23) 0.93 (0.91–0.95) [39]

5q22.1; NREP rs6882649 (0.34) 0.97(0.95–0.99) [41]

5q31.1; HSPA4 rs6596100 (0.25) 0.94(0.92–0.96) [41]

5q33.3; EBF1 rs1432679 (0.43) 1.07 (1.05–1.09) [35]

5q35.1 rs4562056 (0.33) 1.05(1.03–1.07) [41]

6p25.3; FOXQ1 rs11242675 (0.39) 0.94 (0.92–0.96) [35]

6p23; ANBP9 rs204247 (0.43) 1.05 (1.03–1.07) [35]

6p22.3; ATXN1 rs3819405 (0.33) 0.96 (0.94–0.97) [41]

6p22.3; CDKAL1 rs2223621 (0.38) 1.04 (1.02–1.06) [41]

6p22.2 rs71557345 (0.07) 0.92 (0.88–0.96) [41]

6p22.1 rs9257408 (0.38) 1.05 (1.03–1.08) [39]

6q14; LOC105377871 rs17530068 1.12 (1.08–1.16) [34]

6q14.1 rs12207986 (0.47) 0.97 (0.95–0.98) [41]

6q14.1 rs17529111 (0.22) 1.05 (1.03–1.08) [35]

6q23.1; L3MBTL3 rs6569648 (0.23) 0.93 (0.90–0.95) [42]

6q25; ESR1 rs9383938 1.20 [34]

6q25; ESR1 rs2046210 (0.34) 1.08 (1.06–1.10)
[28,35]

6q25; ESR1 rs3757318 (0.07) 1.16 (1.12–1.21)
[30,35]

7p15.3; DNAH11,
CDCA7L

rs7971 (0.35) 0.96 (0.94–0.98) [41]

7p15.1; CUX1 rs17156577 (0.11) 1.05 (1.02–1.08) [41]

7q21.3 rs17268829 (0.28) 1.05 (1.03–1.07) [41]

7q22.1; CUX1 rs71559437 (0.12) 0.93 (0.91–0.96) [41]

7q32.3; FLJ43663 rs4593472 (0.35) 0.95 (0.94–0.97) [39]

7q35; ARHGEF5,
NOBOX

rs720475 (0.25) 0.94 (0.92–0.96) [35]

8p23.3; RPL23AP53 rs66823261 (0.23) 1.09 (1.06–1.12) [42]

Continued next page
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▶ Table 2 Validated SNPs in sporadic breast cancer. (Continued)

Region; Closest Gene SNP-Number (MAF) OR (95% CI), Citation

8p21.1 rs9693444 (0.32) 1.07 (1.05–1.09) [35]

8p11.23;
LOC102723593

rs13365225 (0.17) 0.95 (0.93–0.98) [39]

8q21.11 rs6472903 (0.18) 0.91 (0.89–0.93) [35]

8q21.13; HNF4G rs2943559 (0.07) 1.13 (1.09–1.17) [35]

8q22.3 rs514192 (0.32) 1.05 (1.03–1.07) [41]

8q23.1; ZFPM3 rs12546444 (0.10) 0.93 (0.91–0.96) [41]

8q23.3; LINC00536 rs13267382 (0.36) 1.05 (1.03–1.07) [39]

8q24 rs13281615 (0.41) 1.09 (1.07–1.12)
[22,35]

8q24.13; ANXA13 rs17350191 (0.34) 1.07 (1.04–1.09) [42]

8q24.13 rs58847541 (0.15) 1.08 (1.05–1.10) [41]

8q24.21;MIR1208 rs11780156 (0.16) 1.07 (1.04–1.10) [35]

9p21.3; CDKN2A/B rs1011970 (0.17) 1.06 (1.03–1.08)
[30,35]

9q31; LOC105376214 rs865686 (0.38) 0.89 (0.88–0.91)
[31,35]

9q31.2; TP63 rs10759243 (0.39) 1.06 (1.03–1.08) [35]

9q33.1; ASTN2 rs1895062 (0.41) 0.94 (0.92–0.95) [41]

9q33.3; LMX1B rs10760444 (0.43) 1.03 (1.02–1.05) [41]

9q34.2; ABO rs8176636 (0.20) 1.03 (1.01–1.06) [41]

10p15.1; ANKRD16 rs2380205 (0.44) 0.98 (0.96–1.00)
[30,35]

10p14 rs67958007 (0.12) 1.09 (1.06–1.12) [41]

10p12.31; DNAJC1 rs11814448 (0.02) 1.26 (1.18–1.35) [35]

10p12.31; DNAJC1 rs7072776 (0.29) 1.07 (1.05–1.09) [35]

10q21.2; ZNF365 rs10995190 (0.16) 0.86 (0.84–0.88)
[30,35]

10q22.3; ZMIZ1 rs704010 (0.38) 1.08 (1.06–1.10)
[30,35]

10q23.33 rs140936696 (0.18) 1.04 (1.02–1.07) [41]

10q25.2; TCF7L2 rs7904519 (0.46) 1.06 (1.04–1.08) [35]

10q26.12 rs11199914 (0.32) 0.95 (0.93–0.96) [35]

10q26.13; FGFR2 rs2981579 (0.40) 1.27 (1.24–1.29)
[30,35]

10q26.13; FGFR2 rs2981582 (0.40) 1.27 (1.24–1.29)
[22,35]

11p15.5; LSP1 rs3817198 (0.31) 1.07 (1.05–1.09)
[22,35]

11p15; PIDD1 rs6597981 (0.48) 0.96 (0.94–0.97) [41]

11q13.1 rs3903072 (0.47) 0.95 (0.93–0.96) [35]

11q13.3; CCND1 rs554219 (0.12) 1.33 (1.28–1.37) [37]

11q13.3; CCND1 rs614367 (0.15) 1.21 (1.18–1.24)
[30,35]

11q13.3; CCND1 rs75915166 (0.06) 1.38 (1.32–1.44) [37]

11q22.3; KDELC2 rs11374964 (0.42) 0.94 (0.92–0.96) [42]

11q22.3; KDELC2 rs74911261 (0.02) 0.82 (0.75–0.89) [42]

11q24.3 rs11820646 (0.41) 0.95 (0.93–0.97) [35]

12p13.1 rs12422552 (0.26) 1.05 (1.03–1.07) [35]

▶ Table 2 Validated SNPs in sporadic breast cancer. (Continued)

Region; Closest Gene SNP-Number (MAF) OR (95% CI), Citation

12p11.22; PTHLH rs10771399 (0.12) 0.86 (0.83–0.88)
[33,35]

12p11.22; PTHLH rs1975930 1.22 [34]

12q21.31 rs202049448 (0.34) 0.95 (0.93–0.97) [41]

12q22 NTN4 rs17356907 0.30) 0.91 (0.89–0.93) [35]

12q24; LOC105370003 rs1292011 (0.42) 0.92 (0.90–0.94)
[33,35]

12q24.31 rs206966 (0.16) 1.05 (1.02–1.07) [41]

13q13.1; BRCA2 rs11571833 (0.01) 1.26 (1.14–1.39) [35]

14q13.3; PAX9 rs2236007 (0.21) 0.93 (0.91–0.95) [35]

14q24.1; RAD51B rs999737 (0.23) 0.92 (0.90–0.94)
[27,35]

14q24.1; RAD51B rs2588809 (0.16) 1.08 (1.05–1.11) [35]

14q32.12; RIN3 rs11627032 (0.26) 0.94 (0.92–0.96) [39]

14q32.12; CCDC88C rs941764 (0.34) 1.06 (1.04–1.09) [35]

14q32.33; ADSSL1 rs10623258 (0.45) 1.04 (1.02–1.06) [41]

16p13.3; ADCY9 rs11076805 (0.25) 0.92 (0.90–0.95) [42]

16q12.1; TOX3 rs3803662 (0.26) 1.24 (1.21–1.27)
[22,35]

16q12.2; FTO rs11075995 (0.24) 1.04 (1.02–1.06) [38]

16q12.2; FTO rs17817449 (0.40) 0.93 (0.91–0.95) [35]

16q12.2 rs28539243 (0.49) 1.05 (1.03–1.07) [41]

16q13; AMFR rs2432539 (0.40) 1.03 (1.02–1.05) [41]

16q23.2; CDYL2 rs13329835 (0.22) 1.08 (1.05–1.10) [35]

16q24.2 rs4496150 (0.25) 0.96 (0.94–0.98) [41]

17q11.2; ATAD5 rs29230520 (0.20) 0.93 (0.91–0.96) [39]

17q21.2; CNTNAP1 rs72826962 (0.01) 1.20 (1.11–1.30) [41]

17q21.31; KANSL1 rs2532263 (0.19) 0.95 (0.93–0.97) [41]

17q22; COX11 rs6504950 (0.28) 0.94 (0.92–0.96)
[26,35]

17q25.3 rs745570 (0.50) 0.95 (0.93–0.97) [39]

18q11.2 rs527616 (0.38) 0.95 (0.93–0.97) [35]

18q11.2; CHST9 rs1436904 (0.40) 0.96 (0.94–0.98) [35]

18q12.1; CDH2 rs36194942 (0.30) 0.94 (0.91–0.96) [42]

18q12.1; GAREM1 rs117618124 (0.05) 0.89 (0.85–0.92) [41]

18q12.3; SETBP1 rs6507583 (0.07) 0.91 (0.88–0.95) [39]

19p13.31; SMG9,
KCNN4, LYPD5, ZNF283

rs3760982 (0.46) 1.06 (1.04–1.08) [35]

19p13.13; NFIX1 rs78269692 (0.05) 1.09 (1.04–1.13) [41]

19p13.12 rs2594714 (0.23) 0.97 (0.95–0.99) [41]

19p13.11; SSBP4 rs4808801 (0.35) 0.93 (0.91–0.95) [35]

19p13.11; GATAD2A,
MIR640

rs2965183 (0.35) 1.04 (1.02–1.06) [41]

19p13.11;MERIT40 rs2363956 (0.50) 1.01 (0.98–1.04)
[110]

19p13.11;MERIT40 rs8170 (0.19) 1.04 (1.01–1.06)
[29,35]

Continued next page
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▶ Table 2 Validated SNPs in sporadic breast cancer. (Continued)

Region; Closest Gene SNP-Number (MAF) OR (95% CI), Citation

19p13.2; TSPAN16 rs322144 (0.47) 0.95 (0.93–0.97) [42]

19q12; CCNE rs113701136 (0.32) 1.07 (1.04–1.09) [42]

19q13.22; GIPR rs71338792 (0.23) 1.05 (1.03–1.07) [41]

20p12.3;MCM8 rs16991615 (0.06) 1.10 (1.06–1.14) [41]

20q11 rs2284378 1.08 (1.05–1.12) [34]

20q13.13 rs6122906 (0.18) 1.05 (1.03–1.07) [41]

21q21.1; NRIP1 rs2823093 (0.27) 0.92 (0.90–0.94)
[33,35]

22q12.2; EMID1,
RHBDD3, EWSR1

rs132390 (0.04) 1.12 (1.07–1.18) [35]

22q13.1; PLA2G6 rs738321 (0.38) 0.95 (0.93–0.97) [41]

22q13.2;MKL1 rs6001930 (0.11) 1.12 (1.09–1.16) [35]

22q13.2; XRCC6 rs73161324 (0.06) 1.06 (1.02–1.09) [41]

22q13.31 rs28512361 (0.11) 1.05 (1.02–1.08) [41]

Abbreviations: SNP: single nucleotide polymorphism; MAF: minor allele
frequency; OR: odds ratio; CI: confidence interval.

▶ Table 3 Breast cancer risk assessment tools.

Risk Factor, Reference NCI model
[111,112]

Claus
model
[113]

Tyrer-Cuz
model [65
79,114,1

Age + + +

Age at menarche + +

Age at menopause +

Body mass index +

Age at first birth + +

Mammographic density +

Suspicious mammographic findings

History of breast biopsies + +

History of premalignant lesions + +

Hormone replacement therapy +

Family history of breast cancer + + +

Family history of ovarian cancer +

Family history of prostate cancer

Family history of pancreatic cancer

Contralateral breast cancer +

Histology of breast cancer

BRCA1/2mutation + +

Low penetrant genetic variants (+)

Ethnicity/Ashkenazi Jewish ancestry + +

Mastectomy

Oophorectomy

Abbreviations: NCI: National Cancer Institute; BOADICEA: Breast and Ovarian Ana
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respective gene names or regions, the minor allele frequencies
and the odds ratios. It is assumed that about 18% of the familial
relative risk can be explained with these additional common vari-
ants [41].

The existing data is a plentiful resource to investigate further
questions related to breast cancer with regard to therapy efficacy,
prognosis, pathway analyses and gene environment interactions.
The influence of common genetic variants on therapy efficacy and
prognosis has previously been shown in several breast cancer
studies [43–49]. Data from large international consortia addition-
ally contribute to these questions [50–58]. The relation of com-
mon variants to well-known environmental risk factors as well as
their interaction is of special interest as individuals who are at a
higher risk could be identified. Data on this, however, is scarce
[59–63], so that future analyses with a focus on this field of re-
search are necessary.
Risk Prediction Tools
With increasing knowledge about genetic and non-genetic risk
factors, several risk assessment tools have been developed, vali-
dated with clinical data and continuously up-dated over the last
decades. Their functionality is shown in ▶ Table 3. Each testing
tool features different aspects of breast and/or ovarian cancer risk
ick
,
15]

BRCAPRO
[67,73]

BOADICEA
[66,71,72]

Tice
[116]

Darabi
[117]

Eriksson
[118]

+ + + + +

+

+

+ +

+

+ + +

+

+ +

+

+

+ + + +

+ +

+

+

+ +

+ +

+ +

+

+ + + +

+

+

lysis of Disease Incidence and Carrier Estimation Algorithm.
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ER-positive disease

Age (years)

> 80%

60–80%

40–60%

20–40%

< 20%

20 25 30

0.20

0.15

0.10

0.05

0
35 40 45 50 55 60 65 70 75

▶ Fig. 1 Cumulative lifetime risk of developing estrogen receptor (ER)-positive breast cancer for women of European origin by percentiles of the
polygenic risk score (PRS). Figure from [75] under the terms of the Creative Commons Attribution License.
and is more or less accurate in risk prediction depending on differ-
ent risk situations [64]. To improve their performance many mod-
els have included different genetic and non-genetic risk factors
such as age, body mass index (BMI), menarche and menopause
status, hormone replacement therapy, mammographic density,
histological characteristics, familial cancer background, ethnicity
and others.

Many of these models have lately been developed forward with
up-dates and more simplified versions [65–69]. In the light of de-
mographic change, assessment tools have also been tested in old-
er people such as the NCI tool for people older than 75 years [70].

Two of the most commonly used risk models are BOADICEA
[66,71,72] and BRCAPRO [67,73]. Besides from predicting age-
specific breast and ovarian cancer risks, both models are also ca-
pable of predicting the probability of carrying a BRCA1/2 muta-
tion. Both include a refinement of histopathological features as
triple-negativity or estrogen receptor-negativity that increase the
risk of a genetic background [66,67]. Moreover, BRCAPRO consid-
ers mastectomy and oophorectomy and imputes age if it is not
available from family history [67].

One persisting challenge is the over- and under-estimation of
the individual risk by different risk tools. This leads to the issue
how to find the right genetic risk tool for a patient. A recent
web-based support tool, called iPrevent, can help finding the ad-
equate risk tool for patients. Collins et al. designed a new algo-
rithm for the selection of either BOADICEA or IBIS (= Tyrer-Cuzick
model). The Tyrer-Cuzick model performs better at family con-
stellations with fewer family members and is restricted to breast
Wunderle M et al. Risk, Prediction and… Geburtsh Frauenheilk 2018; 78: 481–492
and ovarian cancer. It also includes non-genetic risk factor data
like BMI, reproductive factors and personal history of high-risk
breast lesions such as atypical hyperplasia and lobular carcinoma
in situ. The BOADICEA model performs better at family constella-
tions with more family members and also includes the histology of
breast cancer and other cancer types such as pancreatic or pros-
tate cancer. With that question algorithm patients are guided to
the more appropriate testing tool and are divided into groups at
average, intermediate and high risk [74].
Polygenic Risk Scores
As mentioned above, although the effects on breast cancer risk
are rather small, common genetic variants can explain up to 18%
of the familial breast cancer risk. Therefore it is reasonable to ex-
plore in how far this information can be used for an individual risk
prediction and breast cancer prevention. The developed models
are usually referred to as polygenic risk scores (PRS). For breast
cancer a first PRS based on a comprehensive dataset was devel-
oped after the availability of the data from the iCOGS chip and
was based on 77 validated breast cancer SNPs [75].

Combining these 77 SNPs into a risk prediction model, lifetime
risks and 10-year disease risks for different ages could be provided
for both estrogen receptor (ER)-positive and ER-negative disease.
For ER-positive disease 20% of the population with the highest risk
have a lifetime risk of over 15%, and 20% of the population with
the lowest risk have a lifetime risk of under 5% according to this
model (▶ Fig. 1) [75]. Regarding ER-negative disease, the lifetime
487



ER-negative disease

Age (years)

> 80%

60–80%

40–60%

20–40%

< 20%

20 25 30

0.20

0.15

0.10

0.05

0
35 40 45 50 55 60 65 70 75

▶ Fig. 2 Cumulative lifetime risk of developing estrogen receptor (ER)-negative breast cancer for women of European origin by percentiles of the
polygenic risk score (PRS). Figure from [75] under the terms of the Creative Commons Attribution License.

High risk for

mammography

failure

Low risk for

mammography

failure

Mammography or

tomosynthesis

Automated assessment

of mammographic density

Automated generation

of texture features

Genetic factors

Prediction of probability for

individual’s mammography

detection failure

Additional 3D ultra-

sound of the breast

▶ Fig. 3 Possible integration of automated mammography assessment and genetic risk assessment into individualized diagnostics for breast cancer.
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risks are much lower with around 3% and 1%, respectively
(▶ Fig. 2). The 10-year disease risk was highest at age 60 and was
about 10% for all breast cancer types in the top 1% of the popula-
tion with the highest risk based on the PRS [75].

Subsequently, several attempts have been made to combine
the PRS with non-genetic risk factors and mammographic density
[76–82]. The inclusion of the most comprehensive number of
SNPs into a breast cancer risk model (Tyrer-Cuzick) showed that
risk prediction could be improved. Nevertheless, the prediction
by non-genetic risk factors and common variants was indepen-
dent from each other [79]. Similar results were seen when com-
bining the PRS with the risk factor mammographic density. Risk
prediction could be improved, however, genetic factors and
mammographic density also predicted risk independently from
each other [78]. Mammographic density is of special interest with
regard to individualized screening programs and individual accu-
racy of the mammography.
Screening for Different Risk Populations
It is known that screening programs are not equally effective and
equally necessary for all women. Breast cancer screening might be
less effective in a population with a low breast cancer risk. Re-
cently, it has also been discussed whether screening programs
can effectively reduce mortality because aggressive forms of can-
cer are missed [83–85]. So the question arises, whether the risk
for aggressive forms of breast cancer is high enough in the
screened population [86].

Women could possibly benefit from individualized screening
methods as mammographic density, diagnostic accuracy and ge-
netic risk factors interact with each other. Several studies have
underlined the correlation between certain common variants and
mammographic breast density [61,87–89]. Both, mammo-
graphic density and the PRS, contribute to breast cancer risk pre-
diction [78], and from several studies it is known that a high mam-
mographic density reduces the sensitivity of mammography in
breast cancer detection [90,91]. Therefore an individualized algo-
rithm might be helpful in directing individualized screening pro-
grams (▶ Fig. 3). With technical advances like the fusion of several
imaging methods [92,93], automated assessment of mammo-
graphic density [94] and diagnostic accuracy of mammography
[95] as well as the integration of big data and machine learning
into patient and tumor assessments [96,97] such individualized
screening strategies seem to be feasible and several studies are al-
ready ongoing [98–102].
Conclusion
As genetic information on breast cancer is increasing, it is impor-
tant to interpret all data in a concerted way and to provide healthy
women as well as breast cancer patients with sufficient informa-
tion to facilitate understanding of their individual risk, decision
making regarding the appropriate individual prevention strategy
and choosing the right treatment option. Risk prediction pro-
grams include a growing number of parameters and are getting
more precise. In addition, more data on moderate and low risk
genes are available. The challenge of the next years will be to
Wunderle M et al. Risk, Prediction and… Geburtsh Frauenheilk 2018; 78: 481–492
translate this knowledge into clinical routine. To provide greater
numbers of breast cancer patients with relevant genetic informa-
tion, it is necessary to further lower the thresholds for genetic
testing and to reduce its costs. Furthermore, the integration of
germline and somatic genetic data, the expression profile of the
tumor as well as clinical data might provide the best treatment
for the individual patient. These factors are still being investigated
in research settings.
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