Subscribe to RSS

DOI: 10.4103/wjnm.wjnm_81_18
Improvement in image quality of Tc-99m-based ventilation/perfusion single-photon emission computed tomography in patients with chronic obstructive pulmonary disease through pretest continuous positive airway pressure treatment
Authors
Abstract
Ventilation/perfusion single-photon emission computed tomography performed using an aerosol of carbon-coated technetium is frequently used for diagnosing pulmonary embolism. Certain patients may suffer from chronic obstructive pulmonary disease (COPD); for such patients, the formation of mucus clots in airways can cause accumulation of the aerosol in the larger airways. This centralized deposition of the aerosol leads to insufficient activity in peripheral lung segments and subsequently results in ventilation images of substandard or even nondiagnostic quality. Continuous positive airway pressure (CPAP) therapy improves airway dynamics and quality of life for COPD patients. We report for the first time the results for two patients for whom initial ventilation scans were of insufficient quality, but diagnostic-quality images were obtained after CPAP therapy.
Keywords
Chronic obstructive pulmonary disease (MeSH) - continuous positive airway pressure ventilation (MeSH) - emission-computed - pulmonary embolism/diagnostic imaging (MeSH) - single-photon (MeSH) - tomographyIntroduction and Case Report
Pulmonary embolism is a potentially life-threatening and common condition with a clinical symptomatology that makes it difficult to distinguish from other pulmonary or cardiac diseases. Imaging techniques such as ventilation/perfusion single-photon emission computed tomography/computed tomography (SPECT/CT) are therefore pivotal in the diagnosis of this condition.[1],[2] In patients with severe chronic obstructive pulmonary disease (COPD), the image quality produced by SPECT is often of substandard or even nondiagnostic quality. These patients exhibit increased mucus production that results in accumulation of the radioactive tracer in “hot spots” when ventilation imaging is performed through inhalation of a carbon-coated technetium aerosol.[3],[4] Continuous positive airway pressure (CPAP) physiotherapy is frequently used for COPD patients to assist with mucus mobilization.[5] We present two cases [Figure 1] and [Figure 2] in which pretest CPAP reduced deposition of the tracer in central airways, thereby improving imaging quality. This approach could particularly benefit patients for whom other imaging modalities, such as CT angiography, are not an option.[6] This method has not previously been described in the literature.




Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.
Conflict of Interest
There are no conflicts of interest.
Financial support and sponsorship
Nil.
-
References
- 1 Mortensen J, Gutte H. SPECT/CT and pulmonary embolism. Eur J Nucl Med Mol Imaging 2014;41 Suppl 1:S81-90.
- 2 Hess S, Frary EC, Gerke O, Madsen PH. State-of-the-art imaging in pulmonary embolism: Ventilation/perfusion single-photon emission computed tomography versus computed tomography angiography – Controversies, results, and recommendations from a systematic review. Semin Thromb Hemost 2016;42:833-45.
- 3 Wollmer P. Aerosolised radionuclides for functional imaging in COPD/asthma. Clin Transl Imaging 2014;2:403-13.
- 4 Schembri GP, Roach PJ, Bailey DL, Freeman L. Artifacts and anatomical variants affecting ventilation and perfusion lung imaging. Semin Nucl Med 2015;45:373-91.
- 5 Dhand R. Aerosol therapy in patients receiving noninvasive positive pressure ventilation. J Aerosol Med Pulm Drug Deliv 2012;25:63-78.
- 6 Aleva FE, Voets LW, Simons SO, de Mast Q, van der Ven AJ, Heijdra YF. Prevalence and localization of pulmonary embolism in unexplained acute exacerbations of COPD: A systematic review and meta-analysis. Chest 2017;151:544-54.
Address for correspondence
Publication History
Received: 00 00 2019
Accepted: 00 00 2019
Article published online:
22 April 2022
© 2019. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Mortensen J, Gutte H. SPECT/CT and pulmonary embolism. Eur J Nucl Med Mol Imaging 2014;41 Suppl 1:S81-90.
- 2 Hess S, Frary EC, Gerke O, Madsen PH. State-of-the-art imaging in pulmonary embolism: Ventilation/perfusion single-photon emission computed tomography versus computed tomography angiography – Controversies, results, and recommendations from a systematic review. Semin Thromb Hemost 2016;42:833-45.
- 3 Wollmer P. Aerosolised radionuclides for functional imaging in COPD/asthma. Clin Transl Imaging 2014;2:403-13.
- 4 Schembri GP, Roach PJ, Bailey DL, Freeman L. Artifacts and anatomical variants affecting ventilation and perfusion lung imaging. Semin Nucl Med 2015;45:373-91.
- 5 Dhand R. Aerosol therapy in patients receiving noninvasive positive pressure ventilation. J Aerosol Med Pulm Drug Deliv 2012;25:63-78.
- 6 Aleva FE, Voets LW, Simons SO, de Mast Q, van der Ven AJ, Heijdra YF. Prevalence and localization of pulmonary embolism in unexplained acute exacerbations of COPD: A systematic review and meta-analysis. Chest 2017;151:544-54.





