Thromb Haemost 2012; 107(04): 611-618
DOI: 10.1160/TH11-12-0826
Theme Issue Article
Schattauer GmbH

The role of microRNAs in arterial remodelling

Maliheh Nazari-Jahantigh
1   Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
,
Yuanyuan Wei
1   Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
,
Andreas Schober
1   Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
› Author Affiliations
Further Information

Publication History

Received: 02 December 2011

Accepted after minor revision: 13 February 2012

Publication Date:
29 November 2017 (online)

Summary

Adaptive alterations of the vessel wall architecture, called vascular remodelling, can be found in arterial hypertension, during the formation of aneurysms, in restenosis after vascular interventions, and in atherosclerosis. MicroRNAs (miR) critically affect the main cellular players in arterial remodelling and may either promote or inhibit the structural changes in the vessel wall. They regulate the phenotype of smooth muscle cells (SMCs) and control the inflammatory response in endothelial cells and macrophages. In SMCs, different sets of miRs induce either a synthetic or contractile phenotype, respectively. The conversion into a synthetic SMC phenotype is a crucial event in arterial remodelling. Therefore, reprogramming of the SMC phenotype by miR targeting can modulate the remodelling process. Furthermore, the effects of stimuli that induce remodelling, such as shear stress, angiotensin II, oxidised low-density lipoprotein, or apoptosis, on endothelial cells are mediated by miRs. The endothelial cell-specific miR-126, for example, is transferred in microvesicles from apoptotic endothelial cells and plays a protective role in atherogenesis. The inflammatory response of the innate immune system, especially through macrophages, promotes arterial remodelling. miR-155 induces the expression of inflammatory cytokines, whereas miR-146a and miR-147 are involved in the resolution phase of inflammation. However, in vivo data on the role of miRs in vascular remodelling are still scarce, which are required to test the therapeutic potential of the available, highly effective miR inhibitors.

 
  • References

  • 1 Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994; 330: 1431-1438.
  • 2 Schober A, Zernecke A. Chemokines in vascular remodeling. Thromb Haemost 2007; 97: 730-737.
  • 3 Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110.
  • 4 Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336-342.
  • 5 Fazi F, Nervi C. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res 2008; 79: 553-561.
  • 6 Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84: 767-801.
  • 7 Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28: 812-819.
  • 8 Mack CP. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011; 31: 1495-1505.
  • 9 Albinsson S, Suarez Y, Skoura A. et al. MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function. Arterioscler Thromb Vasc Biol 2010; 30: 1118-1126.
  • 10 Albinsson S, Skoura A, Yu J. et al. Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function. PLoS ONE 2011; 06: e18869.
  • 11 Cheng Y, Liu X, Yang J. et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 2009; 105: 158-166.
  • 12 Cordes KR, Sheehy NT, White MP. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460: 705-710.
  • 13 Yamaguchi S, Yamahara K, Homma K. et al. The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis 2011; 219: 468-474.
  • 14 Xin M, Small EM, Sutherland LB. et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 2009; 23: 2166-2178.
  • 15 Elia L, Quintavalle M, Zhang J. et al. The knockout of miR-143 and –145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 2009; 16: 1590-1598.
  • 16 Boettger T, Beetz N, Kostin S. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 2009; 119: 2634-2647.
  • 17 Horita HN, Simpson PA, Ostriker A. et al. Serum Response Factor Regulates Expression of Phosphatase and Tensin Homolog Through a MicroRNA Network in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2011; 31: 2909-2919.
  • 18 Hergenreider E, Boon RA, Heydt S. et al. Atheroprotective communication between endothelial cells and smooth muscle cells via KLF2-dependent enrichment of miRNAs in microvesicles Circulation. 2011; 124: A11676.
  • 19 Xie C, Huang H, Sun X. et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 2011; 20: 205-210.
  • 20 Jiang Y, Yin H, Zheng X-L. MicroRNA-1 inhibits myocardin-induced contractility of human vascular smooth muscle cells. J Cell Physiol 2010; 225: 506-511.
  • 21 Chen J, Yin H, Jiang Y. et al. Induction of MicroRNA-1 by Myocardin in Smooth Muscle Cells Inhibits Cell Proliferation. Arterioscler Thromb Vasc Biol 2010; 31: 368-375.
  • 22 Torella D, Iaconetti C, Catalucci D. et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 2011; 109: 880-893.
  • 23 Leeper NJ, Raiesdana A, Kojima Y. et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 2011; 226: 1035-1043.
  • 24 Sun SG, Zheng B, Han M. et al. miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep 2011; 12: 56-62.
  • 25 Yang G, Pei Y, Cao Q. et al. MicroRNA-21 represses human cystathionine gammalyase expression by targeting at specificity protein-1 in smooth muscle cells. J Cell Physiol. 2011 epub ahead of print.
  • 26 Ji R, Cheng Y, Yue J. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007; 100: 1579-1588.
  • 27 Davis BN, Hilyard AC, Lagna G. et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56-61.
  • 28 Liu X, Cheng Y, Zhang S. et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 2009; 104: 476-487.
  • 29 Davis BN, Hilyard AC, Nguyen PH. et al. Induction of microRNA-221 by plateletderived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem 2009; 284: 3728-3738.
  • 30 Chan MC, Hilyard AC, Wu C. et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. Embo J 2010; 29: 559-573.
  • 31 Liu X, Cheng Y, Chen X. et al. MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2. J Biol Chem 2011; 286: 42371-42380.
  • 32 Harris TA, Yamakuchi M, Ferlito M. et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 2008; 105: 1516-1521.
  • 33 Wang S, Aurora AB, Johnson BA. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15: 261-271.
  • 34 Nicoli S, Standley C, Walker P. et al. MicroRNA-mediated integration of hae-modynamics and Vegf signalling during angiogenesis. Nature 2010; 464: 1196-1200.
  • 35 Harris TA, Yamakuchi M, Kondo M. et al. Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol 2010; 30: 1990-1997.
  • 36 Fish JE, Santoro MM, Morton SU. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15: 272-284.
  • 37 Choy JC, Granville DJ, Hunt DW. et al. Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 2001; 33: 1673-1690.
  • 38 Zernecke A, Bidzhekov K, Noels H. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 02: ra81.
  • 39 Zampetaki A, Kiechl S, Drozdov I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810-817.
  • 40 Fichtlscherer S, De Rosa S, Fox H. et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107: 677-684.
  • 41 De Rosa S, Fichtlscherer S, Lehmann R. et al. Transcoronary concentration gradients of circulating microRNAs. Circulation 2011; 124: 1936-1944.
  • 42 van Solingen C, de Boer HC, Bijkerk R. et al. MicroRNA-126 modulates endothe-lial SDF-1 expression and mobilization of Sca-1+/Lin- progenitor cells in ischae-mia. Cardiovasc Res 2011; 92: 449-455.
  • 43 Chatzizisis YS, Coskun AU, Jonas M. et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 2007; 49: 2379-2393.
  • 44 Fang Y, Shi C, Manduchi E. et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 2010; 107: 13450-13455.
  • 45 Qin X, Wang X, Wang Y. et al. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2010; 107: 3240-3244.
  • 46 Weber M, Baker MB, Moore J P. et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 2010; 393: 643-648.
  • 47 Ni CW, Qiu H, Jo H. MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Phy-siol 2011; 300: H1762-1769.
  • 48 Zhou J, Wang KC, Wu W. et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-{alpha} in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci USA 2011; 108: 10355-10360.
  • 49 Wu W, Xiao H, Laguna-Fernandez A. et al. Flow-dependent regulation of krup-pel-like factor 2 is mediated by MicroRNA-92a. Circulation 2011; 124: 633-641.
  • 50 Zhu N, Zhang D, Chen S. et al. Endothelial enriched microRNAs regulate angio-tensin II-induced endothelial inflammation and migration. Atherosclerosis 2011; 215: 286-293.
  • 51 Martin MM, Buckenberger JA, Jiang J. et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem 2007; 282: 24262-24269.
  • 52 Qin B, Xiao B, Liang D. et al. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression. Biochem Biophys Res Com-mun 2011; 410: 127-133.
  • 53 Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hy-pertens 2006; 15: 152-158.
  • 54 Yan ZQ, Hansson GK. Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 2007; 219: 187-203.
  • 55 Schober A, Weber C. Mechanisms of monocyte recruitment in vascular repair after injury. Antioxid Redox Signal 2005; 07: 1249-1257.
  • 56 O'Connell RM, Rao DS, Chaudhuri AA. et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111-122.
  • 57 Yang K, He YS, Wang XQ. et al. MiR-146a inhibits oxidized low-density lipopro-tein-induced lipid accumulation and inflammatory response via targeting tolllike receptor 4. FEBS Lett 2011; 585: 854-860.
  • 58 Chen T, Huang Z, Wang L. et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated mono-cyte/macrophages. Cardiovasc Res 2009; 83: 131-139.
  • 59 Taganov KD, Boldin M P, Chang KJ. et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481-12486.
  • 60 Nahid MA, Pauley KM, Satoh M. et al. miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 2009; 284: 34590-34599.
  • 61 Raitoharju E, Lyytikainen L P, Levula M. et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 2011; 219: 211-217.
  • 62 Liu G, Friggeri A, Yang Y. et al. miR-147, a microRNA that is induced upon Tolllike receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009; 106: 15819-15824.
  • 63 Hoekstra M, van der Lans CAC, Halvorsen B. et al. The peripheral blood mono-nuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 2010; 394: 792-797.
  • 64 O'Connell RM, Taganov KD, Boldin MP. et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104: 1604-1609.
  • 65 McCoy CE, Sheedy FJ, Qualls JE. et al. IL-10 Inhibits miR-155 Induction by Tolllike Receptors. J Biol Chem 2010; 285: 20492-20498.
  • 66 Huang RS, Hu GQ, Lin B. et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med 2010; 58: 961-967.
  • 67 Miller YI, Viriyakosol S, Binder CJ. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 2003; 278: 1561-1568.
  • 68 Ceppi M, Pereira PM, Dunand-Sauthier I. et al. MicroRNA-155 modulates the in-terleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 2009; 106: 2735-2740.
  • 69 Ruggiero T, Trabucchi M, De Santa F. et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macro-phages. Faseb J 2009; 23: 2898-2908.
  • 70 O'Connell RM, Chaudhuri AA, Rao DS. et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 2009; 106: 7113-7118.
  • 71 Androulidaki A, Iliopoulos D, Arranz A. et al. The kinase Akt1 controls macro-phage response to lipopolysaccharide by regulating microRNAs. Immunity 2009; 31: 220-231.
  • 72 Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by MicroRNA-155 via direct targeting of interleukin 13 receptor alpha 1 (IL13Ralpha1). J Biol Chem 2010; 286: 1786-1794.
  • 73 Louafi F, Martinez-Nunez RT, Sanchez-Elsner T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem 2010; 285: 41328-41336.
  • 74 Wang X, Zhao Q, Matta R. et al. Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1. J Biol Chem 2009; 284: 27123-27134.
  • 75 Zhang Y, Liu D, Chen X. et al. Secreted Monocytic miR-150 Enhances Targeted Endothelial Cell Migration. Molecular Cell 2010; 39: 133-144.
  • 76 Liu ML, Reilly M P, Casasanto P. et al. Cholesterol enrichment of human mono-cyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arterioscler Thromb Vasc Biol 2007; 27: 430-435.
  • 77 Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med 2012; 04: 3-14.