Thromb Haemost 2004; 91(03): 425-437
DOI: 10.1160/TH03-12-0764
Theme Issue Review Article
Schattauer GmbH

The structural basis for the pathophysiological relevance of PAI-1 in cardiovascular diseases and the development of potential PAI-1 inhibitors

Ann Gils
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, K. U. Leuven, Leuven, Belgium
,
Paul J. Declerck
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, K. U. Leuven, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Received 16 December 2003

Accepted after revision 21 January 2004

Publication Date:
05 December 2017 (online)

Summary

Plasminogen activator inhibitor-1 (PAI-1) is an important component of the plasminogen/plasmin system as it is the main inhibitor of tissue-type and urokinase-type plasminogen activator. Consequently, PAI-1 plays an important role in cardiovascular diseases (mainly through inhibition of t-PA), and in cell migration and tumor development (mainly through inhibition of u-PA and interaction with vitronectin). As a member of the serpin superfamily, PAI-1 shares important structural properties with other serpins. However, PAI-1 also exhibits unique conformational and functional properties. The current review provides an overview of the knowledge on PAI-1 gathered since its discovery two decades ago. We discuss (a) its structural properties of the protein and their subsequent relation to functional activities, (b) its role in a wide variety of (patho) physiological processes and (c) a number of strategies to interfere with its functional properties eventually aiming at pharmacological modulation of this risk factor.

 
  • References

  • 1 Carrell RW, Boswell DR. Serpins: the superfamily of plasma serine proteinase inhibitors. In: Barrett Salvesen. eds. Proteinase inhibitors. Elsevier Science; 1986: 403-20.
  • 2 Huber R, Carrell RW. Implications of the three-dimensional structure of alpha 1- antitrypsin for structure and function of serpins. Biochemistry 1989; 28: 8951-66.
  • 3 Kuhn P, Knapp M, Soltis SM. et al. The 0.78 angstrom structure of a serine protease: bacillus lentus subtilisin. Biochemistry 1998; 37: 13446-52.
  • 4 Irving JA, Pike RN, Lesk AM. et al. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 2000; 10: 1845-64.
  • 5 Ragg H, Lokot T, Kamp PB. et al. Vertebrate serpins: construction of a conflict-free phylogeny by combining exonintron and diagnostic site analyses. Mol Biol Evol 2001; 18: 577-84.
  • 6 Irving JA, Steenbakkers PJ, Lesk AM. et al. Serpins in prokaryotes. Mol Biol Evol 2002; 19: 1881-90.
  • 7 Gils A, Declerck PJ. Structure-function relationship in serpins: current concepts and controversies. Thromb Haemost 1998; 80: 531-41.
  • 8 Laskowski Jr. M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem 1980; 49: 593-626.
  • 9 Egelund R, Rodenburg KW, Andreasen PA. et al. An ester bond linking a fragment of a serine proteinase to its serpin inhibitor. Biochemistry 1998; 37: 6375-9.
  • 10 Lawrence DA, Ginsburg D, Day DE. et al. Serpinprotease complexes are trapped as stable acylenzyme intermediates. J Biol Chem 1995; 270: 25309-12.
  • 11 Wilczynska M, Fa M, Ohlsson PI. et al. The inhibition mechanism of serpins. Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. J Biol Chem 1995; 270: 29652-5.
  • 12 Huntington JA, Read RJ, Carrell RW. Structure of a serpinprotease complex shows inhibition by deformation. Nature 2000; 407: 923-6.
  • 13 Andreasen PA, Nielsen LS, Kristensen P. et al. Plasminogen activator inhibitor from human fibrosarcoma cells binds urokinasetype plasminogen activator, but not its proenzyme. J Biol Chem 1986; 261: 7644-51.
  • 14 Ginsburg D, Zeheb R, Yang AY. et al. cDNA cloning of human plasminogen activatorinhibitor from endothelial cells. J Clin Invest 1986; 78: 1673-80.
  • 15 Ny T, Sawdey M, Lawrence D. et al. Cloning and sequence of a cDNA coding for the human beta- migrating endothelial-cell-type plasminogen activator inhibitor. Proc Natl Acad Sci U S A 1986; 83: 6776-80.
  • 16 Pannekoek H, Veerman H, Lambers H. et al. Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J 1986; 05: 2539-44.
  • 17 van Mourik JA, Lawrence DA, Loskutoff DJ. Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells. J Biol Chem 1984; 259: 14914-21.
  • 18 Gils A, Pedersen KE, Skottrup P. et al. Biochemical importance of glycosylation of plasminogen activator inhibitor-1. Thromb Haemost 2003; 90: 206-17.
  • 19 Loskutoff DJ, Edgington TS. An inhibitor of plasminogen activator in rabbit endothelial cells. J Biol Chem 1981; 256: 4142-5.
  • 20 Loskutoff DJ, van Mourik JA, Erickson LA. et al. Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells. Proc Natl Acad Sci U S A 1983; 80: 2956-60.
  • 21 Coleman PL, Barouski PA, Gelehrter TD. The dexamethasone-induced inhibitor of fibrinolytic activity in hepatoma cells. A cellular product which specifically inhibits plasminogen activation. J Biol Chem 1982; 257: 4260-4.
  • 22 Booth NA, MacGregor IR, Hunter NR. et al. Plasminogen activator inhibitor from human endothelial cells. Purification and partial characterization. Eur J Biochem 1987; 165: 595-600.
  • 23 Wagner OF, Vetterlein M, Binder BR. Purification of an active plasminogen activator inhibitor immunologically related to the endothelial type plasminogen activator inhibitor from the conditioned media of a human melanoma cell line [published erratum appears in J Biol Chem 1988 Jan 25;263(3):1593]. J Biol Chem 1986; 261: 14474-81.
  • 24 Chmielewska J, Carlsson T, Urden G. et al. On the relationship between different molecular forms of the fast inhibitor of tissue plasminogen activator. Fibrinolysis 1987; 01: 67-73.
  • 25 Juhan IVague, Moerman B, De Cock F. et al. Plasma levels of a specific inhibitor of tissuetype plasminogen activator (and urokinase) in normal and pathological conditions. Thromb Res 1984; 33: 523-30.
  • 26 Kruithof EK, Nicolosa G, Bachmann F. Plasminogen activator inhibitor 1: development of a radioimmunoassay and observations on its plasma concentration during venous occlusion and after platelet aggregation. Blood 1987; 70: 1645-53.
  • 27 Alessi MC, Peiretti F, Morange P. et al. Production of plasminogen activator inhibitor 1 by human adipose tissue: Possible link between visceral fat accumulation and vascular disease. Diabetes 1997; 46: 860-7.
  • 28 Wells JA. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol 1991; 202: 390-411.
  • 29 Loskutoff DJ, Linders M, Keijer J. et al. Structure of the human plasminogen activator inhibitor 1 gene: nonrandom distribution of introns. Biochemistry 1987; 26: 3763-8.
  • 30 Bosma PJ, van den Berg EA, Kooistra T. et al. Human plasminogen activator inhibitor-1 gene. Promoter and structural gene nucleotide sequences. J Biol Chem 1988; 263: 9129-41.
  • 31 Strandberg L, Lawrence D, Ny T. The organization of the human-plasminogen-activatorinhibitor-1 gene. Implications on the evolution of the serine-protease inhibitor family. Eur J Biochem 1988; 176: 609-16.
  • 32 Riccio A, Lund LR, Sartorio R. et al. The regulatory region of the human plasminogen activator inhibitor type-1 (PAI-1) gene. Nucleic Acids Res 1988; 16: 2805-24.
  • 33 Zeheb R, Gelehrter TD. Cloning and sequencing of cDNA for the rat plasminogen activator inhibitor-1. Gene 1988; 73: 459-68.
  • 34 Mimuro J, Sawdey M, Hattori M. et al. cDNA for bovine type 1 plasminogen activator inhibitor (PAI-1). Nucleic Acids Res 1989; 17: 8872.
  • 35 Prendergast GC, Diamond LE, Dahl D. et al. The c-mycregulated gene mrl encodes plasminogen activator inhibitor 1. Mol Cell Biol 1990; 10: 1265-9.
  • 36 Hofmann KJ, Mayer EJ, Schultz LD. et al. Purification and characterisation of recombinant rabbit plasminogen activator inhibitor-1 expressed in Saccharomyces cerevisiae. Fibrinolysis 1992; 06: 263-72.
  • 37 Bijnens AP, Knockaert I, Cousin E. et al. Expression and characterization of recombinant porcine plasminogen activator inhibitor- 1. Thromb Haemost 1997; 77: 350-6.
  • 38 Dong G, Schulick AH, DeYoung MB. et al. Identification of a cisacting sequence in the human plasminogen activator inhibitor type-1 gene that mediates transforming growth factor-beta1 responsiveness in endothelium in vivo. J Biol Chem 1996; 271: 29969-77.
  • 39 Irigoyen JP, Munoz-Canoves P, Montero L. et al. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56: 104-32.
  • 40 Datta PK, Blake MC, Moses HL. Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between smads and Sp1. J Biol Chem 2000; 275: 40014-9.
  • 41 Motojima M, Ando T, Yoshioka T. Sp1-like activity mediates angiotensin-II-induced plasminogen-activator inhibitor type-1 (PAI-1) gene expression in mesangial cells. Biochem J 2000; 349: 435-41.
  • 42 Eren M, Painter CA, Gleaves LA. et al. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice. J Thromb Haemost 2003; 01: 2389-96.
  • 43 Gruber F, Hufnagl P, Hofer-Warbinek R. et al. Direct binding of Nur77/NAK-1 to the plasminogen activator inhibitor 1 (PAI-1) promoter regulates TNF alpha -induced PAI-1 expression. Blood 2003; 101: 3042-8.
  • 44 Lawrence D, Strandberg L, Grundstrom T. et al. Purification of active human plasminogen activator inhibitor 1 from Escherichia coli. Comparison with natural and recombinant forms purified from eucaryotic cells. Eur J Biochem 1989; 186: 523-33.
  • 45 Audenaert AM, Knockaert I, Collen D. et al. Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point mutations in the reactive-site loop. J Biol Chem 1994; 269: 19559-64.
  • 46 Gils A, Knockaert I, Declerck PJ. Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Biochemistry 1996; 35: 7474-81.
  • 47 Kjoller L, Martensen PM, Sottrupjensen L. et al. Conformational changes of the reactive centre loop and beta strand 5a accompany temperature dependent inhibitor substrate transition of plasminogen activator inhibitor 1. Eur J Biochem 1996; 241: 38-46.
  • 48 Rodenburg KW, Kjoller L, Petersen HH. et al. Binding of urokinase-type plasminogen activator plasminogen activator inhibitor-1 complex to the endocytosis receptors alpha(2)-macroglobulin receptor low-density lipoprotein receptor- related protein and very-lowdensity lipoprotein receptor involves basic residues in the inhibitor. Biochem J 1998; 329 Part 1: 55-63.
  • 49 Hansen M, Busse MN, Andreasen PA. Importance of the amino-acid composition of the shutter region of plasminogen activator inhibitor-1 for its transitions to latent and substrate forms. Eur J Biochem 2001; 268: 6274-83.
  • 50 Gils A, Knockaert I, Brouwers E. et al. Glycosylation dependent conformational transitions in plasminogen activator inhibitor1: evidence for the presence of two active conformations. Fibrinolysis Proteolysis 2000; 14: 58-64.
  • 51 Andreasen PA, Egelund R, Jensen S. et al. Solvent effects on activity and conformation of plasminogen activator inhibitor-1. Thromb Haemost 1999; 81: 407-14.
  • 52 Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985; 260: 11581-7.
  • 53 Declerck PJ, De Mol M, Vaughan DE. et al. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissuetype plasminogen activator. J Biol Chem 1992; 267: 11693-6.
  • 54 Aertgeerts K, De Bondt HL, De Ranter C. et al. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol 1995; 02 (10) 891-7.
  • 55 Sharp AM, Stein PE, Pannu NS. et al. The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure Fold Des 1999; 07: 111-8.
  • 56 Nar H, Bauer M, Stassen JM. et al. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J Mol Biol 2000; 297: 683-95.
  • 57 Stout TJ, Graham H, Buckley DI. et al. Structures of active and latent PAI-1: a possible stabilizing role for chloride ions. Biochemistry 2000; 39: 8460-9.
  • 58 Mottonen J, Strand A, Symersky J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 1992; 355: 270-3.
  • 59 Berkenpas MB, Lawrence DA, Ginsburg D. Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J 1995; 14: 2969-77.
  • 60 Declerck PJ, De Mol M, Alessi MC, et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem 1988; 263: 15454-61.
  • 61 Wun TC, Palmier MO, Siegel NR. et al. Affinity purification of active plasminogen activator inhibitor-1 (PAI-1) using immobilized anhydrourokinase. Demonstration of the binding, stabilization, and activation of PAI-1 by vitronectin. J Biol Chem 1989; 264: 7862-8.
  • 62 Ehrlich AJ, Gebbink RK, Keijer J. et al. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 1990; 265: 13029-35.
  • 63 Naski MC, Lawrence DA, Mosher DF. et al. Kinetics of inactivation of alpha-thrombin by plasminogen activator inhibitor-1. Comparison of the effects of native and ureatreated forms of vitronectin. J Biol Chem 1993; 268: 12367-72.
  • 64 Rezaie AR. Vitronectin functions as a cofactor for rapid inhibition of activated protein C by plasminogen activator inhibitor-1 – Implications for the mechanism of profibrinolytic action of activated protein C. J Biol Chem 2001; 276: 15567-70.
  • 65 Lawrence DA, Palaniappan S, Stefansson S. et al. Characterization of the binding of different conformational forms of plasminogen activator inhibitor 1 to vitronectin: implications for the regulation of pericellular proteolysis. J Biol Chem 1997; 272: 7676-80.
  • 66 Lawrence DA, Berkenpas MB, Palaniappan S. et al. Localization of vitronectin binding domain in plasminogen activator inhibitor-1. J Biol Chem 1994; 269: 15223-8.
  • 67 van Meijer M, Gebbink RK, Preissner KT. et al. Determination of the vitronectin binding site on plasminogen activator inhibitor 1 (PAI-1). FEBS Lett 1994; 352: 342-6.
  • 68 Padmanabhan J, Sane DC. Localization of a vitronectin binding region of plasminogen activator inhibitor-1. Thromb Haemost 1995; 73: 829-34.
  • 69 Arroyo DP, Schroeck F, Sinner EK. et al. Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin. Eur J Biochem 2002; 269: 184-92.
  • 70 Jensen JK, Wind T, Andreasen PA. The vitronectin binding area of plasminogen activator inhibitor-1, mapped by mutagenesis and protection against an inactivating organochemical ligand. FEBS Lett 2002; 521: 91-4.
  • 71 Zhou A, Huntington JA, Pannu NS. et al. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol 2003; 10: 541-4.
  • 72 Jensen JK, Durand KV, Skeldal S. et al. Construction of a plasminogen activator inhibitor-1 variant without measurable affinity to vitronectin but otherwise normal. FEBS Lett 2004; 556: 175-9.
  • 73 Patston PA, Gettins P, Beechem J. et al. Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. Biochemistry 1991; 30: 8876-82.
  • 74 Gils A, Declerck PJ. Proteinase specificity and functional diversity in point mutants of plasminogen activator inhibitor 1. J Biol Chem 1997; 272: 12662-6.
  • 75 De Taeye B, Compernolle G, Dewilde M. et al. Immobilization of the distal hinge in the labile serpin plasminogen activator inhibitor 1: Identification of a transition state with distinct conformational and functional properties. J Biol Chem 2003; 278: 23899-905.
  • 76 Keijer J, Linders M, Wegman JJ. et al. On the target specificity of plasminogen activator inhibitor 1: the role of heparin, vitronectin, and the reactive site. Blood 1991; 78: 1254-61.
  • 77 Carrell R, Travis J. α1-Antitrypsin and the serpins: variation and countervariation. TIBS 1985; 20-4.
  • 78 Sherman PM, Lawrence DA, Yang AY. et al. Saturation mutagenesis of the plasminogen activator inhibitor-1 reactive center. J Biol Chem 1992; 267: 7588-95.
  • 79 Sherman PM, Lawrence DA, Verhamme IM. et al. Identification of tissue-type plasminogen activator-specific plasminogen activator inhibitor-1 mutants. Evidence that second sites of interaction contribute to target specificity. J Biol Chem 1995; 270: 9301-6.
  • 80 York JD, Li P, Gardell SJ. Combinatorial mutagenesis of the reactive site region in plasminogen activator inhibitor I. J Biol Chem 1991; 266: 8495-500.
  • 81 Fa M, Karolin J, Aleshkov S. et al. Timeresolved polarized fluorescence spectroscopy studies of plasminogen activator inhibitor type 1: conformational changes of the reactive center upon interactions with target proteases, vitronectin and heparin. Biochemistry 1995; 34: 13833-40.
  • 82 Chmielewska J, Ranby M, Wiman B. Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor. Evidence for ‘second-site’ interactions. Biochem J 1988; 251: 327-32.
  • 83 Hekman CM, Loskutoff DJ. Bovine plasminogen activator inhibitor 1: specificity determinations and comparison of the active, latent, and guanidine-activated forms. Biochemistry 1988; 27: 2911-8.
  • 84 Lawrence DA, Strandberg L, Ericson J. et al. Structure-function studies of the SERPIN plasminogen activator inhibitor type 1. Analysis of chimeric strained loop mutants. J Biol Chem 1990; 265: 20293-301.
  • 85 Madison EL, Goldsmith EJ, Gerard RD. et al. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature 1989; 339: 721-4.
  • 86 Madison EL, Goldsmith EJ, Gething MJ. et al. Restoration of serine protease-inhibitor interaction by protein engineering. J Biol Chem 1990; 265: 21423-6.
  • 87 Tucker HM, Gerard RD. Sequence requirements in the reactive-center loop of plasminogen- activator inhibitor-1 for recognition of plasminogen activators. Eur J Biochem 1996; 237: 180-7.
  • 88 Bajou K, Masson V, Gerard RD. et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin: Implications for antiangiogenic strategies. J Cell Biol 2001; 152: 777-84.
  • 89 Devy L, Blacher S, Grignet-Debrus C. et al. The pro-or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 2002; 16: 147-54.
  • 90 Kwaan HC, Wang J, Svoboda K. et al. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer 2000; 82: 1702-8.
  • 91 Gutierrez LS, Schulman A, Brito RT. et al. Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res 2000; 60: 5839-47.
  • 92 Bajou K, Noel A, Gerard RD. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 1998; 04: 923-8.
  • 93 Brodsky S, Chen J, Lee A. et al. Plasmindependent and -independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis. Am J Physiol Heart Circ Physiol 2001; 281: H1784-H1792.
  • 94 Durand MKV, Bødker JS, Christensen A. et al. Plasminogen activator inhibitor-1 and tumour growth, invasion, and metastasis. Thromb Haemost 2004; 91: 438-49.
  • 95 Harbeck N, Kates RE, Gauger K. et al. Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 2004; 91: 450-6.
  • 96 Erickson LA, Ginsberg MH, Loskutoff DJ. Detection and partial characterization of an inhibitor of plasminogen activator in human platelets. J Clin Invest 1984; 74: 1465-72.
  • 97 Schleef RR, Higgins DL, Pillemer E. et al. Bleeding diathesis due to decreased functional activity of type 1 plasminogen activator inhibitor. J Clin Invest 1989; 83: 1747-52.
  • 98 Dieval J, Nguyen G, Gross S. et al. A lifelong bleeding disorder associated with a deficiency of plasminogen activator inhibitor type 1. Blood 1991; 77: 528-32.
  • 99 Lee MH, Vosburgh E, Anderson K. et al. Deficiency of plasma plasminogen activator inhibitor 1 results in hyperfibrinolytic bleeding. Blood 1993; 81: 2357-62.
  • 100 Fay WP, Parker AC, Condrey LR. et al. Human plasminogen activator inhibitor 1 (pai 1) deficiency: characterization of a large kindred with a null mutation in the pai 1 gene. Blood 1997; 90: 204-8.
  • 101 Minowa H, Takahashi Y, Tanaka T. et al. Four cases of bleeding diathesis in children due to congenital plasminogen activator inhibitor-1 deficiency. Haemostasis 1999; 29: 286-91.
  • 102 Hamsten A, de Faire U, Walldius G. et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987; 02: 3-9.
  • 103 Meade TW, Ruddock V, Stirling Y. et al. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study [see comments]. Lancet 1993; 342: 1076-9.
  • 104 Thompson SG, Kienast J, Pyke SD. et al. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 1995; 332: 635-41.
  • 105 Juhan IVague, Pyke SDM, Alessi MC. et al. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. Circulation 1996; 94: 2057-63.
  • 106 Folsom AR, Aleksik N, Park E. et al. Prospective study of fibrinolytic factors and incident coronary heart disease – The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 2001; 21: 611-7.
  • 107 Schafer K, Fujisawa K, Konstantinides S. et al. Disruption of the plasminogen activator inhibitor-1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice. FASEB Journal 2001; 15: 1840-2.
  • 108 Schneiderman J, Sawdey MS, Keeton MR. et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci U S A 1992; 89: 6998-7002.
  • 109 Lupu F, Heim DA, Bachmann F. et al. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1995; 15: 1444-55.
  • 110 Robbie LA, Booth NA, Brown PAJ. et al. Inhibitors of fibrinolysis are elevated in atherosclerotic plaque. Arterioscler Thromb Vasc Biol 1996; 16: 539-45.
  • 111 Eriksson P, Kallin B, van ’t Hooft FM. et al. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci U S A 1995; 92: 1851-5.
  • 112 Ridker PM, Hennekens CH, Lindpaintner K. et al. Arterial and venous thrombosis is not associated with the 4g/5g polymorphism in the promoter of the plasminogen activator inhibitor gene in a large cohort of us men. Circulation 1997; 95: 59-62.
  • 113 Zoller B, Garcia-de-Frutos P, Dahlback B. A common 4G allele in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene as a risk factor for pulmonary embolism and arterial thrombosis in hereditary protein S deficiency. Thromb Haemost 1998; 79: 802-7.
  • 114 Henry M, Tregouet DA, Alessi MC. et al. Metabolic determinants are much more important than genetic polymorphisms in determining the PAI-1 activity and antigen plasma concentrations: a family study with part of the Stanislas Cohort. Arterioscler Thromb Vasc Biol 1998; 18: 84-91.
  • 115 Juhan-Vague I, Morange PE, Frere C. et al. The plasminogen activator inhibitor-1 -675 4G/5G genotype influences the risk of myocardial infarction associated with elevated plasma proinsulin and insulin concentrations in men from Europe: the HIFMECH Study. J Thromb Haemost 2003; 01: 2322-9.
  • 116 Dawson SJ, Wiman B, Hamsten A. et al. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem 1993; 268: 10739-45.
  • 117 Ridker PM, Gaboury CL, Conlin PR. et al. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation 1993; 87: 1969-73.
  • 118 Booth NA, Robbie LA, Croll AM. et al. Lysis of platelet-rich thrombi: the role of PAI-1. Ann N Y Acad Sci 1992; 667: 70-80.
  • 119 Paoni NF, Keyt BA, Refino CJ. et al. A slow clearing, fibrin-specific, PAI-1 resistant variant of t- PA (T103N, KHRR 296-299 AAAA). Thromb Haemost 1993; 70: 307-12.
  • 120 Bennett WF, Paoni NF, Keyt BA. et al. High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 1991; 266: 5191-201.
  • 121 Stewart RJ, Fredenburgh JC, Leslie BA. et al. Identification of the mechanism responsible for the increased fibrin specificity of TNK-tissue plasminogen activator relative to tissue plasminogen activator. J Biol Chem 2000; 275: 10112-20.
  • 122 Angeja BG, Alexander JH, Chin R. et al. Safety of the weight-adjusted dosing regimen of tenecteplase in the ASSENT-Trial. Am J Cardiol 2001; 88: 1240-5.
  • 123 Van de Werf F, Barron HV, Armstrong PW. et al. Incidence and predictors of bleeding events after fibrinolytic therapy with fibrinspecific agents: a comparison of TNK-tPA and rt-PA. Eur Heart J 2001; 22: 2253-61.
  • 124 Wang-Clow F, Fox NL, Cannon CP. et al. Determination of a weight-adjusted dose of TNK-tissue plasminogen activator. Am Heart J 2001; 141: 33-40.
  • 125 Al Shwafi KA, de Meester A, Pirenne B. et al. Comparative fibrinolytic activity of frontloaded alteplase and the single-bolus mutants tenecteplase and lanoteplase during treatment of acute myocardial infarction. Am Heart J 2003; 145: 217-25.
  • 126 Serebruany VL, Malinin AI, Callahan KP. et al. Effect of tenecteplase versus alteplase on platelets during the first 3 hours of treatment for acute myocardial infarction: the Assessment of the Safety and Efficacy of a New Thrombolytic Agent (ASSENT-2) platelet substudy. Am Heart J 2003; 145: 636-42.
  • 127 Erickson LA, Fici GJ, Lund JE. et al. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 1990; 346: 74-6.
  • 128 Eren M, Painter CA, Atkinson JB. et al. Agedependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation 2002; 106: 491-6.
  • 129 Carmeliet P, Kieckens L, Schoonjans L. et al. Plasminogen activator inhibitor-1 gene-deficient mice. I. Generation by homologous recombination and characterization. J Clin Invest 1993; 92: 2746-55.
  • 130 Zheng X, Saunders TL, Camper SA. et al. Vitronectin is not essential for normal mammalian development and fertility. Proc Natl Acad Sci U S A 1995; 92: 12426-30.
  • 131 Eitzman DT, Westrick RJ, Nabel EG. et al. Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice. Blood 2000; 95: 577-80.
  • 132 Levi M, Biemond BJ, van Zonneveld AJ. et al. Inhibition of plasminogen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis [see comments]. Circulation 1992; 85: 305-12.
  • 133 Perrie AM, MacGregor IR, Booth NA. Definition of epitopes within plasminogen activator inhibitor type-1 (PAI-1) using multiple peptide synthesis. Fibrinolysis 1993; 07: 257-63.
  • 134 Biemond BJ, Levi M, Coronel R. et al. Thrombolysis and reocclusion in experimental jugular vein and coronary artery thrombosis. Effects of a plasminogen activator inhibitor type 1-neutralizing monoclonal antibody. Circulation 1995; 91: 1175-81.
  • 135 Debrock S, Declerck PJ. Neutralization of plasminogen activator inhibitor-1 inhibitory properties: identification of two different mechanisms. Biochim Biophys Acta 1997; 1337: 257-66.
  • 136 Berry CN, Lunven C, Lechaire I. et al. Antithrombotic activity of a monoclonal antibody inducing the substrate form of plasminogen activator inhibitor type 1 in rat models of venous and arterial thrombosis. Br J Pharmacol 1998; 125: 29-34.
  • 137 Ngo TH, Declerck PJ. Suppression of plasminogen activator inhibitor 1 (PAI-1) activity levels in rats by monoclonal antibodies. Fibrinolysis Proteolysis 1998; 12: 335-9.
  • 138 Bijnens AP, Gils A, Stassen JM. et al. The distal hinge of the reactive site loop and its proximity: a target to modulate plasminogen activator inhibitor-1 activity. J Biol Chem 2001; 276: 44912-8.
  • 139 Kvassman JO, Lawrence DA, Shore JD. The acid stabilization of plasminogen activator inhibitor-1 depends on protonation of a single group that affects loop insertion into betasheet A. J Biol Chem 1995; 270: 27942-7.
  • 140 Eitzman DT, Fay WP, Lawrence DA. et al. Peptide-mediated inactivation of recombinant and platelet plasminogen activator inhibitor-1 in vitro. J Clin Invest 1995; 95: 2416-20.
  • 141 Xue Y, Björquist P, Inghardt T. et al. Interfering with the inhibitory meachnism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure 1998; 06: 627-36.
  • 142 Gardsvoll H, van-Zonneveld AJ, Holm A. et al. Selection of peptides that bind to plasminogen activator inhibitor 1 (PAI-1) using random peptide phage-display libraries. FEBS Lett 1998; 431: 170-4.
  • 143 Bryans J, Charlton PR, Collins M. et al. Inhibition of plasminogen activator inhibitor 1 activity by two diketopiperazines, XR330 and XR334 produced by streptomyces sp. J Antibiot 1996; 49: 1014-21.
  • 144 Charlton PA, Faint RW, Bent F. et al. Evaluation of a low molecular weight modulator of human plasminogen activator inhibitor-1 activity. Thromb Haemost 1996; 75: 808-15.
  • 145 Charlton P, Faint R, Barnes C. et al. XR5118, a novel modulator of plasminogen activator inhibitor 1 (PAI 1), increases endogenous tpa activity in the rat. Fibrinolysis & Proteolysis 1997; 11: 51-6.
  • 146 Friederich PW, Levi MR, Biemond BJ. et al. Novel low molecular weight inhibitor of pai-1 (XR5118) promotes endogenous fibrinolysis and reduces postthrombolysis thrombus growth in rabbits. Circulation 1997; 96: 916-21.
  • 147 Bjorquist P, Ehnebom J, Inghardt T. et al. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by sitedirected mutagenesis. Biochemistry 1998; 37: 1227-34.
  • 148 Folkes A, Roe MB, Sohal S. et al. Synthesis and in vitro evaluation of a series of diketopiperazine inhibitors of plasminogen activator inhibitor-1. Bioorg Med Chem Lett 2001; 11: 2589-92.
  • 149 Egelund R, Einholm AP, Pedersen KE. et al. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands – Ligand-induced serpin polymerization. J Biol Chem 2001; 276: 13077-86.
  • 150 Gils A, Stassen JM, Nar H. et al. Characterization and comparative evaluation of a novel PAI-1 inhibitor. Thromb Haemost 2002; 88: 137-43.
  • 151 Ehnebom J, Bjorquist P, Andersson JO. et al. Detergent tween 80 modifies the specific activity of pai 1. Fibrinolysis & Proteolysis 1997; 11: 165-70.
  • 152 Gils A, Declerck PJ. Modulation of plasminogen activator inhibitor 1 by Triton X-100 – Identification of two consecutive conformational transitions. Thromb Haemost 1998; 80: 286-91.
  • 153 Stec WJ, Cierniewski CS, Okruszek A. et al. Stereodependent inhibition of plasminogen activator inhibitor type 1 by phosphorothioate oligonucleotides: proof of sequence specificity in cell culture and in vivo rat experiments. Antisense Nucleic Acid Drug Dev 1997; 07: 567-73.
  • 154 Nielsen LS, Andreasen PA, Grondahl JHansen. et al. Monoclonal antibodies to human 54,000 molecular weight plasminogen activator inhibitor from fibrosarcoma cells-inhibitor neutralization and one-step affinity purification. Thromb Haemost 1986; 55: 206-12.
  • 155 MacGregor IR, Tonner AM, Micklem LR. et al. Murine monoclonal antibodies against active site epitopes on human endothelial plasminogen activator inhibibitor (PAI-1). Fibrinolysis 1990; 04: 27-34.
  • 156 Declerck PJ, Verstreken M, Collen D. Immunoassay of murine t-PA, u-PA and PAI- 1 using monoclonal antibodies raised in geneinactivated mice. Thromb Haemost 1995; 74: 1305-9.
  • 157 Ngo TH, Verheyen S, Knockaert I. et al. Monoclonal antibody-based immunoassays for the specific quantitation of rat PAI-1 antigen and activity in biological samples. Thromb Haemost 1998; 79: 808-12.
  • 158 Leng HM, Brouwers E, Knockaert I. et al. Immunoassays for the quantitation of porcine PAI-1 antigen and activity in biological fluid samples. Thromb Haemost 2000; 84: 1082-6.
  • 159 Bijnens AP, Gils A, Knockaert I. et al. Importance of the hinge region between α-helix F and the main part of serpins, based upon identification of the epitope of plasminogen activator inhibitor type 1 neutralizing antibodies. J Biol Chem 2000; 275: 6375-80.
  • 160 Verhamme I, Kvassman JO, Day DE. et al. Accelerated conversion of human plasminogen activator inhibitor-1 to its latent form by antibody binding. J Biol Chem 1999; 274: 17511-7.
  • 161 Ngo TH, Zhou Y, Stassen JM. et al. Importance of N-terminal residues in plasminogen activator inhibitor 1 on its antibody induced latency transition. Thromb Haemost 2002; 88: 288-93.
  • 162 Declerck PJ, Collen D. Measurement of plasminogen activator inhibitor 1 (PAI-1) in plasma with various monoclonal antibodybased enzyme-linked immunosorbent assays. Thromb Res Suppl 1990; 10: 3-9.
  • 163 Keijer J, Linders M, van Zonneveld AJ. et al. The interaction of plasminogen activator inhibitor 1 with plasminogen activators (tissue-type and urokinase-type) and fibrin: localization of interaction sites and physiologic relevance. Blood 1991; 78: 401-9.
  • 164 van Giezen JJ, Wahlund G. Nerme et al. The Fab-fragment of a PAI-1 inhibiting antibody reduces thrombus size and restores blood flow in a rat model of arterial thrombosis. Thromb Haemost 1997; 77: 964-9.
  • 165 Rupin A, Martin F, Vallez MO. et al. Inactivation of plasminogen activator inhibitor-1 accelerates thrombolysis of a plateletrich thrombus in rat mesenteric arterioles. Thromb Haemost 2001; 86: 1528-31.
  • 166 Montes R, Declerck PJ, Calvo A. et al. Prevention of renal fibrin deposition in endotoxin-induced DIC through inhibition of PAI-1. Thromb Haemost 2000; 84: 65-70.
  • 167 Stoop AA, Jespers L, Lasters I. et al. Highdensity mutagenesis by combined DMA shuffling and phage display to assign essential amino acid residues in protein-protein interactions: Application to study structure-function of plasminogen activation inhibitor 1 (PAI-I). J Mol Biol 2000; 301: 1135-47.
  • 168 Wind T, Jensen MA, Andreasen PA. Epitope mapping for four monoclonal antibodies against human plasminogen activator inhibitor type-1 – Implications for antibody-mediated PAI-1-neutralization and vitronectin-binding. Eur J Biochem 2001; 268: 1095-106.
  • 169 Komissarov AA, Declerck PJ, Shore JD. Mechanisms of conversion of plasminogen activator inhibitor 1 from a suicide inhibitor to a substrate by monoclonal antibodies. J Biol Chem 2002; 277: 43858-65.
  • 170 Naessens D, Gils A, Compernolle G. et al. Elucidation of a novel epitope of a substrateinducing monoclonal antibody against the serpin PAI-1. J Thromb Haemost 2003; 01: 1028-33.
  • 171 Naessens D, Gils A, Compernolle G. et al. Elucidation of the epitope of a latency-inducing antibody: identification of a new molecular target for PAI-1 inhibition. Thromb Haemost 2003; 90: 52-8.
  • 172 Gorlatova NV, Elokdah H, Fan K. et al. Mapping of a conformational epitope on plasminogen activator inhibitor-1 by random mutagenesis. Implications for serpin function. J Biol Chem 2003; 278: 16329-35.
  • 173 Ngo TH, Hoylaerts MF, Knockaert I. et al. Identification of a target site in plasminogen activator inhibitor-1 that allows neutralization of its inhibitory properties concomitant with an allosteric up-regulation of its antiadhesive properties. J Biol Chem 2001; 276: 26243-8.
  • 174 Chavakis T, Pixley RA, Isordia-Salas I. et al. A novel antithrombotic role for high molecular weight kininogen as inhibitor of plasminogen activator inhibitor-1 function. J Biol Chem 2002; 277: 32677-82.
  • 175 Einholm AP, Pedersen KE, Wind T. et al. Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1. Biochem J 2003; 373: 723-32.
  • 176 Wang S, Golec J, Miller W. et al. Novel inhibitors of plasminogen activator inhibitor-1: development of new templates from diketopiperazines. Bioorg Med Chem Lett 2002; 12: 2367-70.
  • 177 Pedersen KE, Einholm AP, Christensen A. et al. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands. Biochem J 2003; 372: 747-55.
  • 178 Vinogradsky B, Bell SP, Woodcock-Mitchell J. et al. A new butadiene derivative, T-686, inhibits plasminogen activator inhibitor type-1 production in vitro by cultured human vascular endothelial cells and development of atherosclerotic lesions in vivo in rabbits. Thromb Res 1997; 85: 305-14.
  • 179 Pawlowska Z, Chabielska E, Kobylanska A. et al. Regulation of PAI-1 concentration in platelets by systemic administration of antisense oligonucleotides to rats. Thromb Haemost 2001; 85: 1086-9.
  • 180 Pawlowska Z, Pluskota E, Chabielska E. et al. Phosphorothioate oligodeoxyribonucleotides antisense to PAI-1 mRNA increase fibrinolysis and modify experimental thrombosis in rats. Thromb Haemost 1998; 79: 348-53.