Subscribe to RSS
DOI: 10.1055/s-2007-990918
Methy(trifluoromethyl)dioxirane (TFD): A Powerful and Versatile Oxidant in Organic Synthesis
Publication History
Publication Date:
03 December 2007 (online)
Biographical Sketches
Introduction
During the last two decades, the use of dioxiranes as oxidants in organic synthesis has increased considerably. [1] Methyl(trifluoromethyl)dioxirane (TFD) has the highest reactivity among dioxiranes reported so far, and has been utilized for a broad variety of oxidative transformations in organic synthesis. Exemplary transformations are the monohydroxylation of alkanes, [2] chemoselective oxidation of allylic alcohols, [3] optically active sec,sec-1,2-diols [4] and simple sulfides, [5] oxyfunctionalization of unactivated tertiary and secondary C-H bonds of alkylamines [6] and aliphatic esters, [7] epoxidation of primary and secondary alkenylammonium salts [8] and chiral camphor N-enoylpyrazolidinones, [9] oxidative cleavage of acetals, ketals [10] and aryl oxazolines, [11] and conversion of cyclic ethers into lactones. [10] It is also found to be a useful reagent for the oxyfunctionalization of natural [12-14] and non-natural [15-19] targets, which include the direct hydroxylation at the side-chain C-25 of cholestane derivatives and vitamin D3 Windaus-Grundmann ketone, [12] high stereo- and regioselective conversion of vitamin D2 into its (all-R) tetraepoxide and C-25 hydroxy derivative, [13] stereoselective synthesis of (all-R)-vitamin D3 triepoxide and its 25-hydroxy derivative, [14] oxidation of centropolyindans, [15] buckminsterfullerene C60, [16] Binor S, [17] hydrocarbons bearing cyclopropyl moieties, [18] and selective bridgehead dihydroxylation of fenestrindane. [19]
Preparation
TFD can be readily prepared by the oxidation of 1,1,1-trifluoro-2-propanone with potassium peroxomonosulfate triple salt KHSO5 KHSO4 K2SO4 (Oxone®, Scheme [1] ). A dilute solution of TFD in 1,1,1-trifluoro-2-propanone with variable concentrations of 0.05-0.8 M or a ketone-free solution of TFD can be obtained and used in oxidative reactions. [20]
Scheme 1
Abstracts
(A) Oxyfunctionalization of Saturated Hydrocarbons: A convenient application of TFD in organic synthesis is the direct oxyfunctionalization of saturated hydrocarbons. [21] In this reaction, high selectivities were recorded for an oxygen insertion at the tertiary > secondary >> primary ‘unactivated’ C-H bonds. The oxidation of tertiary C-H gave tertiary alcohols, while oxidation of secondary carbons yielded primarily ketones. | |
(B) Conversion of Alcohols into Carbonyl Compounds: An efficient procedure for the oxidation of secondary alcohols to ketones is achieved using TFD as oxidant. Primary alcohols are converted into mixtures of aldehydes and acids. [22a] Direct conversion of epoxy alcohols into epoxy ketones has also been achieved in high yield using this reagent. [22b] | |
(C) Epxoxidation of Olefins: TFD can be applied as a powerful oxidizing reagent for unfunctionalized, strongly electron-deficient, and electron-rich olefins under neutral reaction conditions. [23] | |
(D) Selective Oxidation of Acetylenic 1,4-Diols: Curci and co-workers [24] showed that acetylenic 1,4-diols can be selectively oxidized to diketones by using TFD in acetone. When the free OH functionalities are masked by conversion into acetoxy, oxidation at the CºC bond takes place instead. | |
(E) Oxidative Cleavage of p-Methoxybenzyl Ethers: TFD is also used for oxidative cleavage of the p-methoxybenzyl group to give the E,Z-configured aldehydo ester in aqueous acetonitrile. [25] The free hydroxyl, ester and amide groups, ketone and ether functionalities tolerate the oxidative ring-cleavage conditions. | |
(F) Oxidation of Peptides: Rella and Williard reported that Boc-protected and acetyl-protected peptide methyl esters bearing alkyl side chains undergo chemoselective oxidation using TFD under mild conditions. N-Hydroxylation took place in the case of the Boc-protected peptides, and side-chain hydroxylation occurred in the case of acetyl-protected peptides. [26] |
-
1xa
Adam W.Curci R.Edwards JO. Acc. Chem. Res. 1989, 22: 205 -
1xb
Curci R.D’Accolti L.Fusco C. Acc. Chem. Res. 2006, 39: 1 -
1xc
Murray RW. Chem. Rev. 1989, 89: 1187 - 1
Asebsio G.Mello R.González-Nú ME.ez Castellano G.Corral J. Angew. Chem., Int. Ed. Engl. 1996, 35: 217 -
2a
Adam W.Paredes R.Smerz AK.Veloza LA. Eur. J. Org. Chem. 1998, 349 -
2b
D’Accolti L.Fiorentino M.Fusco C.Rosa AM.Curci R. Tetrahedron Lett. 1999, 40: 8023 - 3
D’Accolti L.Detomaso A.Fusco C.Rosa A.Curci R. J. Org. Chem. 1993, 58: 3600 - 4
Asensio G.Mello R.González-Nú ME. Tetrahedron Lett. 1996, 37: 2299ez - 5
Asensio G.González-Nú ME.ez Bernardini CB.Mello R.Adam W. J. Am. Chem. Soc. 1993, 115: 7250 - 6
Asensio G.Castallano G.Mello R.González-Nú ME. J. Org. Chem. 1996, 61: 5564ez - 7
Asensio G.Mello R.Boix-Bernardini C.González-Nú ME.ez Castellano G. J. Org. Chem. 1995, 60: 3692 - 8
Fan CL.Lee W.-D.Teng N.-W.Sun Y.-C.Chen K. J. Org. Chem. 2003, 68: 9816 - 9
Voigt B.Porzel A.Golsch D.Adam W.Adam G. Tetrahedron 1996, 52: 10653 - 10
Yang D.Yip Y.-C.Wang X.-C. Tetrahedron Lett. 1997, 38: 7083 - 11
Bovicelli P.Lupattelli P.Mincione E. J. Org. Chem. 1992, 57: 5052 - 12
Curci R.Detomaso A.Lattanzio ME.Carpenter GB. J. Am. Chem. Soc. 1996, 118: 11089 - 13
Curci R.Detomaso A.Prencipe T.Carpenter GB. J. Am. Chem. Soc. 1994, 116: 8112 - 14
Kuck D.Schuster A.Fusco C.Fiorentino M.Curci R. J. Am. Chem. Soc. 1994, 116: 2375 - 15
Fusco C.Seraglia R.Curci R. J. Org. Chem. 1999, 64: 8363 - 16
D’Accolti L.Fusco C.Lucchini V.Carpenter GB.Curci R. J. Org. Chem. 2001, 66: 9063 - 17
D’Accolti L.Dinoi A.Fusco C.Curci R. J. Org. Chem. 2003, 68: 7806 - 18
Fusco C.Fiorentino M.Dinoi A.Curci R. J. Org. Chem. 1996, 61: 8681 -
19a
Mello R.Fiorentino M.Sciacovelli O.Curci R. J. Org. Chem. 1988, 53: 3890 -
19b
Mello R.González-Nú ME.ez Asensio G. Synlett 2007, 47 -
20a
Mello R.Fiorentino M.Fusco C.Curci R. J. Am. Chem. Soc. 1989, 111: 6749 -
20b
González-Nú ME.ez Royo J.Mello R.Báguena M.Ferrer JM.de Arellano CR.Asensio G.Prakash GKS. J. Org. Chem. 2005, 70: 7919 -
20c
D’Accolti L.Fiorentino M.Fusco C.Capitelli F.Curci R. Tetrahedron Lett. 2007, 48: 3575 -
21a
Mello R.Cassidei L.Fiorentino M.Fusco C.Hümmer W.Jäger V.Curci R. J. Am. Chem. Soc. 1991, 113: 2205 -
21b
D’Accolti L.Fusco C.Annese C.Rella MR.Turteltaub JS.Williard PG.Curci R. J. Org. Chem. 2004, 69: 8510 -
22a
Yang D.Wong M.-K.Yip Y.-C. J. Org. Chem. 1995, 60: 3887 - 23
D’Accolti L.Fiorentino M.Fusco C.Crupi P.Curci R. Tetrahedron Lett. 2004, 45: 8575 - 24
Paquette LA.Kreilein MM.Bedore MW.Friedrich D. Org. Lett. 2005, 7: 4665 - 25
Rella MR.Williard PG. J. Org. Chem. 2007, 72: 525
References
-
1xa
Adam W.Curci R.Edwards JO. Acc. Chem. Res. 1989, 22: 205 -
1xb
Curci R.D’Accolti L.Fusco C. Acc. Chem. Res. 2006, 39: 1 -
1xc
Murray RW. Chem. Rev. 1989, 89: 1187 - 1
Asebsio G.Mello R.González-Nú ME.ez Castellano G.Corral J. Angew. Chem., Int. Ed. Engl. 1996, 35: 217 -
2a
Adam W.Paredes R.Smerz AK.Veloza LA. Eur. J. Org. Chem. 1998, 349 -
2b
D’Accolti L.Fiorentino M.Fusco C.Rosa AM.Curci R. Tetrahedron Lett. 1999, 40: 8023 - 3
D’Accolti L.Detomaso A.Fusco C.Rosa A.Curci R. J. Org. Chem. 1993, 58: 3600 - 4
Asensio G.Mello R.González-Nú ME. Tetrahedron Lett. 1996, 37: 2299ez - 5
Asensio G.González-Nú ME.ez Bernardini CB.Mello R.Adam W. J. Am. Chem. Soc. 1993, 115: 7250 - 6
Asensio G.Castallano G.Mello R.González-Nú ME. J. Org. Chem. 1996, 61: 5564ez - 7
Asensio G.Mello R.Boix-Bernardini C.González-Nú ME.ez Castellano G. J. Org. Chem. 1995, 60: 3692 - 8
Fan CL.Lee W.-D.Teng N.-W.Sun Y.-C.Chen K. J. Org. Chem. 2003, 68: 9816 - 9
Voigt B.Porzel A.Golsch D.Adam W.Adam G. Tetrahedron 1996, 52: 10653 - 10
Yang D.Yip Y.-C.Wang X.-C. Tetrahedron Lett. 1997, 38: 7083 - 11
Bovicelli P.Lupattelli P.Mincione E. J. Org. Chem. 1992, 57: 5052 - 12
Curci R.Detomaso A.Lattanzio ME.Carpenter GB. J. Am. Chem. Soc. 1996, 118: 11089 - 13
Curci R.Detomaso A.Prencipe T.Carpenter GB. J. Am. Chem. Soc. 1994, 116: 8112 - 14
Kuck D.Schuster A.Fusco C.Fiorentino M.Curci R. J. Am. Chem. Soc. 1994, 116: 2375 - 15
Fusco C.Seraglia R.Curci R. J. Org. Chem. 1999, 64: 8363 - 16
D’Accolti L.Fusco C.Lucchini V.Carpenter GB.Curci R. J. Org. Chem. 2001, 66: 9063 - 17
D’Accolti L.Dinoi A.Fusco C.Curci R. J. Org. Chem. 2003, 68: 7806 - 18
Fusco C.Fiorentino M.Dinoi A.Curci R. J. Org. Chem. 1996, 61: 8681 -
19a
Mello R.Fiorentino M.Sciacovelli O.Curci R. J. Org. Chem. 1988, 53: 3890 -
19b
Mello R.González-Nú ME.ez Asensio G. Synlett 2007, 47 -
20a
Mello R.Fiorentino M.Fusco C.Curci R. J. Am. Chem. Soc. 1989, 111: 6749 -
20b
González-Nú ME.ez Royo J.Mello R.Báguena M.Ferrer JM.de Arellano CR.Asensio G.Prakash GKS. J. Org. Chem. 2005, 70: 7919 -
20c
D’Accolti L.Fiorentino M.Fusco C.Capitelli F.Curci R. Tetrahedron Lett. 2007, 48: 3575 -
21a
Mello R.Cassidei L.Fiorentino M.Fusco C.Hümmer W.Jäger V.Curci R. J. Am. Chem. Soc. 1991, 113: 2205 -
21b
D’Accolti L.Fusco C.Annese C.Rella MR.Turteltaub JS.Williard PG.Curci R. J. Org. Chem. 2004, 69: 8510 -
22a
Yang D.Wong M.-K.Yip Y.-C. J. Org. Chem. 1995, 60: 3887 - 23
D’Accolti L.Fiorentino M.Fusco C.Crupi P.Curci R. Tetrahedron Lett. 2004, 45: 8575 - 24
Paquette LA.Kreilein MM.Bedore MW.Friedrich D. Org. Lett. 2005, 7: 4665 - 25
Rella MR.Williard PG. J. Org. Chem. 2007, 72: 525
References
Scheme 1