Synthesis 2007(15): 2397-2403  
DOI: 10.1055/s-2007-983768
PAPER
© Georg Thieme Verlag Stuttgart · New York

Selective Synthesis of ent-15-epi-F 2t -Isoprostane and a Deuterated Derivative

Manami Shizuka, Marc L. Snapper*
Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
Fax: +1(617)5521442; e-Mail: marc.snapper@bc.edu;
Further Information

Publication History

Received 8 March 2007
Publication Date:
12 July 2007 (online)

Abstract

Isoprostanes are an emerging class of lipid metabolites whose physiological properties are not well understood. The selective synthesis of ent-15-epi-F2t-isoprostane, an isomer active in a preliminary screening assay is described. The synthesis features a regioselective cross-metathesis on an enantiomerically enriched divinyl cyclopentyl intermediate to selectively differentiate the side-chains of the target. The route provides the isoprostane, as well as a d 4-labeled analogue, in 14 steps from readily available starting material­s.

    References

  • For free radical peroxidation of arachidonic acid, see:
  • 1a Morrow JD. Hill KE. Burk RF. Nammour TM. Badr KF. Roberts LJ. Proc. Nat. Acad. Sci. U.S.A.  1990,  87:  9383 
  • 1b Morrow JD. Awad JA. Boss HJ. Blair IA. Roberts LJ. Proc. Natl. Acad. Sci. U.S.A.  1992,  89:  10721 
  • 1c Morrow JD. Minton TA. Mukundan CR. Campbell MD. Zackert WE. Daniel VC. Badr KF. Blair IA. Roberts LJ. J. Biol. Chem.  1994,  269:  4317 
  • 1d Harrison KA. Murphy RC. J. Biol. Chem.  1995,  270:  17273 
  • 1e Morrow JD. Awad JA. Wu A. Zackert WE. Daniel VC. Roberts LJ. J. Biol. Chem.  1996,  271:  23185 
  • 1f Basu S. Prostaglandins, Leukotrienes Essent. Fatty Acids  1998,  58:  319 
  • 1g Roberts LJ. Fessel JP. Chem. Phys. Lipids  2004,  128:  173 
  • 1h See also: Wang D. DuBois RN. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  415 
  • 2a Natarajan R. Lanting L. Gonzales N. Nadler J. Am. J. Physiol.  1996,  271:  E159 
  • 2b Kunapuli P. Lawson JA. Rokach JA. Meinkoth JL. FitzGerald GA. J. Biol. Chem.  1998,  273:  22442 
  • 3a Leitinger N. Blazek I. Sinzinger H. Thrombosis Res.  1997,  86:  337 
  • 3b Cranshaw JH. Evans TW. Mitchell JA. Brit. J. Pharm.  2001,  132:  1699 
  • 3c For review, see: Csiszar A. Stef G. Pacher P. Ungvari Z. Prostaglandins, Leukotrienes Essent. Fatty Acids  2002,  66:  557 
  • 4a Morrow JD. Zackert WE. Van Der Ende DS. Reich EE. Terry ES. Cox B. Sanchez SC. Montine TJ. Roberts LJ. Oxidative Stress Disease  2002,  8:  57 
  • 4b For a recent review, see: Milne GL. Morrow JD. Antioxid. Redox Signal.  2006,  8:  1379 
  • 4c Yin H. Musiek ES. Morrow JD. J. Biol. Sci.  2006,  6:  469 
  • 4d Morrow JD. Curr. Pharmaceut. Design  2006,  12:  895 
  • 5a Quinn JF. Montine KS. Moore M. Morrow JD. Kaye JA. Montine TJ. J. Alzheimer’s Dis.  2004,  6:  93 
  • 5b Nishio T. Miyadera R. Sakai R. Abe K. Kanazawa H. Fukui K. Urano S. J. Clin. Biochem. Nutr.  2006,  38:  161 
  • 5c For a review, see: Montine TJ. Quinn JF. Kaye JA. Morrow JD. Oxidative Stress Disease  2006,  22:  147 
  • 6a For recent review, see: Giovanni D. Falco A. Patrono C. Chem. Phys. Lipids  2004,  128:  149 
  • 6b See also: Boyne MS. Sargeant LA. Bennett FI. Wilks RJ. Cooper RS. Forrester TE. Diabetes Res. Clin. Pract.  2007,  76:  149 
  • 7a Camphausen K. Menard C. Sproull M. Goley E. Basu S. Coleman CN. Int. J. Radiat. Oncol. Biol. Phys.  2004,  58:  1536 
  • 7b Rossner P. Gammon MD. Terry MB. Agrawal M. Zhang FF. Teitelbaum SL. Eng SM. Gaudet MM. Neugut AI. Santella RM. Cancer Epidem. Biomar.  2006,  15:  639 
  • For reviews, see:
  • 8a Taber DF. Hoerner SR. Herr JR. Gleave MD. Kanai K. Pina R. Jiang Q. Xu M. Chem. Phys. Lipids  2004,  128:  57 
  • 8b Quan LG. Cha JK. Chem. Phys. Lipids  2004,  128:  3 
  • 8c Rokach J. Kim S. Bellone S. Lawson JA. Pratico D. Powell WS. FitzGerald GA. Chem. Phys. Lipids  2004,  128:  35 
  • For early references, see:
  • 8d Corey EJ. Shih NY. Shimoji K. Tetrahedron Lett.  1984,  25:  5013 
  • 8e O’Connor DE. Mihelich ED. Coleman MC. J. Am. Chem. Soc.  1984,  106:  3577 
  • 8f Rondot B. Durand T. Girard JP. Rossi JC. Schio L. Khanapure SP. Rokach J. Tetrahedron Lett.  1993,  34:  8245 
  • 8g Hwang SW. Adiyama M. Khanapure S. Schio L. Rokach J. J. Am. Chem. Soc.  1994,  116:  10829 
  • 8h Larock RC. Lee NH. J. Am. Chem. Soc.  1991,  113:  7815 
  • 8i See also: Roland A. Durand T. Egron D. Vidal JP. Rossi JC. J. Chem. Soc., Perkin Trans. 1  2000,  245 
  • 8j Durand T. Guy A. Vidal JP. Rossi JC. J. Org. Chem.  2002,  67:  3615 
  • 8k Jacobo SH. Chang C.-T. Lee G.-J. Lawson JA. Powell WS. Pratico D. FitzGerald GA. Rokach J. J. Org. Chem.  2006,  71:  1370 
  • 8l Jung ME. Berliner A. Angst D. Yue D. Koroniak L. Watson AD. Li R. Org. Lett.  2005,  7:  3933 
  • 8m Pinot E. Guy A. Guyon A.-L. Rossi J.-C. Durand T. Tetrahedron: Asymmetry  2005,  16:  1893 
  • 9 Schrader TO. Snapper ML. J. Am. Chem. Soc.  2002,  124:  10998 
  • 10a Schrader TO. Snapper ML. Tetrahedron Lett.  2000,  41:  9685 
  • For earlier studies on ring-opening cross-metathesis of cyclobutenes, see:
  • 10b Randall ML. Tallarico JA. Snapper ML. J. Am. Chem. Soc.  1995,  117:  9610 
  • 10c Tallarico JA. Bonitatebus PJ. Snapper ML. J. Am. Chem. Soc.  1997,  119:  7157 
  • 10d Snapper ML. Tallarico JA. Randall ML. J. Am. Chem. Soc.  1997,  119:  1478 
  • 10e Tallarico JA. Randall ML. Snapper ML. Tetrahedron  1997,  53:  16511 
  • 11 Schrader TO. Ph.D. Thesis   Boston College; Chestnut Hill Massachusetts: 2002. 
  • 12 Theil F. Schick H. Winter G. Reck G. Tetrahedron  1991,  47:  7569 
  • 13 Gosh AK. Liu W. J. Org. Chem.  1997,  62:  7908 
  • 14 For a more recent and convenient approach to this intermediate, see: Zhao Y. Rodrigo J. Hoveyda AH. Snapper ML. Nature (London)  2006,  443:  67 
  • 15a Buchi G. Burgess EM. J. Am. Chem. Soc.  1960,  82:  4333 
  • 15b Eaton PE. Tetrahedron Lett.  1964,  3695 
  • 15c Serebryakov EP. Kulomzina-Pletneva SD. Margaryan AK. Tetrahedron  1979,  35:  77 
  • 16 Cho JH. Kim BM. Org. Lett.  2003,  5:  531 
  • 18 Corey EJ. Helal CJ. Angew. Chem. Int. Ed.  1998,  37:  1986 
  • 20 Einhorn J. Einhorn C. Ratajczak F. Pierre J.-L. J. Org. Chem.  1996,  61:  7452 
  • 21 This isotopically labeled isoprostane could be used as an alternative standard for metabolic studies as shown in: Kim S. Powell WS. Lawson JA. Jacobo SH. Pratico D. FitzGerald GA. Maxey K. Rokach J. Bioorg. Med. Chem. Lett.  2005,  15:  1613 
  • 22 Williams JM. Jobson RB. Yasuda N. Marchesini G. Dolling U.-J. Grabowski EJJ. Tetrahedron Lett.  1995,  36:  5461 
  • For selected examples of GC/MS studies for the analysis of isoprostanes, see:
  • 23a Roberts LJ. Morrow JD. In Methods in Biological Oxidative Stress   Hensley K. Floyd RA. Humana Press; Totawa NJ: 2003.  Chap. 4. p.33-39  
  • 23b Morrow JD. Harris TM. Roberts LJ. Anal. Biochem.  1990,  184:  1 
  • 23c Wang Z. Ciabattoni G. Creminon C. Lawson J. FitzGerald GA. Patrono C. Maclouf J. J. Pharmacol. Exp. Ther.  1995,  275:  94 
  • 23d Bachi A. Zuccato E. Baraldi M. Fanelli R. Chiabrando C. Free Radic. Biol. Med.  1996,  20:  619 
  • 23e Waugh RJ. Murphy RC. J. Am. Soc. Mass Spectrom.  1996,  7:  490 
  • 23f Patrignani P. Santini G. Panara MR. Sciulli M. Greco A. Rotondo MT. diGiamberardino M. Maclouf J. Ciabattoni G. Patrono C. Br. J. Pharmacol.  1996,  118:  1285 
  • 25 Garber SB. Kingsbury JS. Gray BL. Hoveyda AH. J. Am. Chem. Soc.  2000,  122:  8168 
  • 26 Theil F. Schick H. Winter G. Reck G. Tetrahedron  1991,  47:  7569 
17

Regioselectivity was determined by COSY NMR.

19

Selectivity was determined by 1H NMR (estimated detection limits of 20:1) by comparison with authentic samples of each diastereomer.

24

More details on the setup and results of the GC/MS detection assay may be obtained by contacting the authors.

27

Data shown for a 74% yield reaction. Yields range from
70-90%, depending on catalyst purity.

28

This compound is the major isomer; however, it is in a mixture of isomers of lower deuterium incorporation.