Subscribe to RSS
DOI: 10.1055/s-2007-982553
Synthesis of 4-Substituted 1,5-Dihydropyrrol-2-ones and 5,6-Dihydro-1H-pyridin-2-ones by Negishi Cross-Coupling Reactions: Short Access to the Antidepressant (±)-Rolipram
Publication History
Publication Date:
06 June 2007 (online)
Abstract
A straightforward access to the title compounds was established by Pd-catalyzed Negishi cross-coupling reactions of the readily available bromides 3 and 6 with various functionalized zinc reagents (71-97% yield).
Key words
catalysis - cross-coupling - heterocycles - lactams - palladium - zinc
- Reviews on 1,5-dihydropyrrol-2-ones and 5,6-dihydro-1H-pyridin-2-ones:
-
1a
Rio G.Masure D. Bull. Soc. Chim. Fr. 1972, 12: 4598 -
1b
Egorova AY.Timofeeva ZY. Chem. Heterocycl. Compd. (N.Y.) 2004, 10: 1243 -
1c
Smith MB. Science of Synthesis Vol. 21:Weinreb SM. Thieme; Stuttgart: 2005. p.647-711 -
1d
Fisyuk AS.Poendaev NV. In Targets in Heterocyclic Systems Vol. 5:Attanasi OA.Spinelli D. Società Chimica Italiana; Roma: 2005. p.271 - Individual methods (see also ref. 4) for 4-substituted 1,5-dihydropyrrol-2-ones, see:
-
2a
Barluenga J.Fañanás FJ.Foubelo F.Yus M. Tetrahedron Lett. 1988, 29: 4859 -
2b
Corriu RJP.Bolin G.Iqbal J.Moreau JJE.Vernhet C. Tetrahedron 1993, 49: 4603 -
2c
Li W.-R.Lin ST.Hsu N.-M.Chern M.-S. J. Org. Chem. 2002, 67: 4702 -
2d
Lautens M.Han W.Liu JH.-C. J. Am. Chem. Soc. 2003, 125: 4028 -
2e
Verniest G.Boterberg S.Bombeke F.Stevens CV.De Kimpe N. Synlett 2004, 1059 - 3 Review on Pd-catalyzed conjugate substitution reactions:
Negishi E.-i.Dumond Y. Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E.-i. Wiley; New York: 2002. p.767-789 - A 4-stannylated N-Boc-protected 1,5-dihydropyrrol-2-one has been used as nucleophile in Stille cross-coupling reactions:
-
4a
Reginato G.Capperucci A.Degl’Innocenti A.Mordini A.Pecchi S. Tetrahedron 1995, 51: 2129 -
4b
Santos MMM.Lobo AM.Prabhakar S.Marques MMB. Tetrahedron Lett. 2004, 45: 2347 - 5
Li W.-R.Lin ST.Hsu N.-M.Chern M.-S. J. Org. Chem. 2002, 67: 4702 - 6
Oda R.Takashima S.Okano M. Bull. Chem. Soc. Jpn. 1962, 35: 1843 - 8
Jas G. Synthesis 1991, 965 - 9
Huo S. Org. Lett. 2003, 5: 423 - 10
Milne JE.Buchwald SL. J. Am. Chem. Soc. 2004, 126: 13028 - 12
Prasad ASB.Stevenson TM.Citineni JR.Nyzam V.Knochel P. Tetrahedron 1997, 53: 7237 -
13a
Baures PW.Egglestone DS.Erhard KF.Cieslinski LB.Torphy TJ.Christensen SB. J. Med. Chem. 1993, 36: 3274 -
13b
Sommer N.Loeschmann PA.Northoff GH.Weller M.Steinbrecher A.Steinbach JP.Richtenfels R.Meyermann R.Reithmueller A.Fontana A.Dichgans J.Martin R. Nat. Med. 1995, 1: 244 -
13c
Nibuya M.Nestler EJ.Duman RS. J. Neurosci. 1996, 16: 2365 -
13d
Seika M. Drugs Future 1998, 23: 108 ; and references therein - 14
Schmiechen R,Horowski R,Palenschat D,Paschelke G,Wachtel H, andKehr W. inventors; US 4193926. ; Chem. Abstr. 1976, 84, 30878 - 15
Wachtel H. J. Pharm. Pharmacol. 1983, 35: 440 - 16
Beavo JA.Reifsnyder DH. Trends Pharm. Sci. 1990, 11: 150 -
17a
Marivet MC.Bourguignon J.-J.Lugnier C.Mann A.Stoclet J.-C.Wermuth C.-G. J. Med. Chem. 1989, 32: 1450 -
17b
Doherthy AM. Curr. Opin. Chem. Biol. 1999, 3: 466 -
17c
Burnouf C.Pruniaux M.-P.Szilagyi CM. Annu. Rep. Med. Chem. 1998, 33: 91 - 18
Barluenga J.Fernández-Rodríguez MA.Aguilar E.Fernández-Marí F.Salinas A.Olano B. Chem. Eur. J. 2001, 7: 3533 -
19a
Blaschke G. J. Liq. Chromatogr. 1986, 9: 341 -
19b
Kuesters E.Spoendlin C. J. Chromatogr., A 1996, 737: 333 - 20
Petzoldt K,Schmiechen R, andHamp K. inventors; DE 3921593. ; Chem. Abstr. 1991, 114, 143134 - For previous syntheses of rolipram, see:
-
21a
Mulzer J.Zuhse R.Schmiechen R. Angew. Chem., Int. Ed. Engl. 1992, 31: 870 -
21b
Meyers AI.Snyder L. J. Org. Chem. 1993, 58: 36 -
21c
Baures PW.Egglestone DS.Erhard KF.Cieslinski LB.Torphy TJ.Christensen SB. J. Med. Chem. 1993, 36: 3274 -
21d
Mulzer J. J. Prakt. Chem. 1994, 336: 287 -
21e
Braun M.Opdenbusch K.Unger C. Synlett 1995, 1174 -
21f
Honda T.Ishikawa F.Kanai K.Sato S.Kato D.Tominaga H. Heterocycles 1996, 42: 109 -
21g
Langlois N.Wang H.-S. Synth. Commun. 1997, 27: 3133 -
21h
Diaz A.Siro JG.García-Navío JL.Vaquero JJ.Alvarez-Builla J. Synthesis 1997, 559 -
21i
Demnitz J.LaVecchia L.Bacher E.Keller TH.Müller T.Schürch F.Weber H.-P.Pombo-Villar E. Molecules 1998, 3: 107 -
21j
Anada M.Mita O.Watanabe H.Kitagaki S.Hashimoto S. Synlett 1999, 1775 -
21k
Barluenga J.Fernández-Rodríguez MA.Aguilar E.Fernández-Marí F.Salinas A.Olano B. Chem. Eur. J. 2001, 7: 3533 -
21l
Itoh K.Kanemasa S. J. Am. Chem. Soc. 2002, 124: 13394 -
21m
Barnes DM.Ji J.Fickes MG.Fitzgerald MA.King SA.Morton HE.Plagge FA.Preskill M.Wagaw SH.Wittenberger SJ.Zhang J. J. Am. Chem. Soc. 2002, 124: 13097 -
21n
Yoon CH.Nagle A.Chen C.Gandhi D.Jung KW. Org. Lett. 2003, 5: 2259 -
21o
Chang M.-Y.Sun P.-P.Chen S.-T.Chang N.-C. Heterocycles 2003, 60: 1865 -
21p
Becht J.-M.Meyer O.Helmchen G. Synthesis 2003, 2805 -
21q
Garcia ALL.Carpes MJS.de Oca ACBM.dos Santos MAG.Santana CC.Correia CRD. J. Org. Chem. 2005, 70: 1050 -
21r
Tonogaki K.Itami K.Yoshida J. J. Am. Chem. Soc. 2006, 128: 1464 -
21s
Paraskar AS.Sudalai A. Tetrahedron 2006, 62: 4907 - 23 For catalytic enantioselective conjugate reductions of five-membered lactams, see:
Hughes G.Kimura M.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 11253
References and Notes
Typical Procedure for the Bromide Formation with Oxalyl Bromide To a solution of DMF (6.4 mL, 82.3 mmol) in dry CH2Cl2 (100 mL) oxalyl bromide (6.8 mL, 73.4 mmol) was added slowly at 0 °C. The reaction mixture was stirred at this temperature until gas formation ceased. Then, 1-tert-butyl-piperidine-2,4-dione (8, 5.24 g, 31.0 mmol) dissolved in dry CH2Cl2 (50 mL) was added to the solution at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and for 1 h at r.t. After neutralization with sat. aq NaHCO3 solution, H2O (20 mL) and CH2Cl2 (20 mL) were added. The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 × 20 mL). The organic layers were combined, washed with sat. aq NaCl solution (20 mL) and dried over MgSO4. After filtration the solvent was evaporated under reduced pressure. After purification by flash chromatography (pentane-EtOAc, 9:1) 4-bromo-1-tert-butyl-5,6-dihydro-1H-pyridin-2-one (4, 5.98 g, 25.9 mmol, 84%) was obtained as colorless liquid. R f = 0.25 (cyclohexane-EtOAc, 9:1). IR (film): νmax = 2974, 2868, 1652, 1625, 1461, 1411, 1364, 1352, 1319, 1258, 1242 cm-1. 1H NMR (360 MHz, CDCl3): δ = 1.40 (s, 9 H), 2.68 (dt, 3 J = 6.8 Hz, 4 J = 1.4 Hz, 2 H), 3.44 (t, 3 J = 6.8 Hz, 2 H), 6.17 (t, 4 J = 1.4 Hz, 1 H) ppm. 13C NMR (90.6 MHz, CDCl3): δ = 28.6 (q), 35.6 (t), 42.2 (t), 57.0 (s), 129.5 (d), 135.7 (q), 164.3 (s) ppm. HMRS (EI): m/z calcd for C8H11BrNO [M - CH3]+: 216.0024; found: 216.0019. Anal. Calcd for C9H14BrNO: C, 46.57; H, 6.08; N, 6.03. Found: C, 46.53; H, 6.07; N, 6.12.
11Representative Cross-Coupling Procedure To a solution of Pd2(dba)3 (20 mg, 22.7 µmol) and RuPhos (40 mg, 90.8 µmol) in dry dimethylacetamide (2 mL) 4-bromo-1-tert-butyl-5,6-dihydro-1H-pyridin-2-one (4, 105 mg, 0.454 mmol) was added at r.t. After stirring for 10 min a solution of the organozinc reagent (0.903 mmol) prepared according to procedure A was added at once. After the reaction mixture was stirred at r.t. for 14 h the solvent was removed under reduced pressure. Purification by flash chromatography (pentane-EtOAc, 19:1) yielded 4-butyl-1-tert-butyl-5,6-dihydro-1H-pyridin-2-one (9a, 92.0 mg, 0.441 mmol, 97%) as a colorless liquid. R f = 0.18 (cyclohexane-EtOAc, 9:1). 1H NMR (360 MHz, CDCl3): δ = 0.85 (t, 3 J = 7.2 Hz, 3 H), 1.44-1.21 (m, 13 H), 2.07 (t, 3 J = 7.5 Hz, 2 H), 2.13 (t, 3 J = 6.6 Hz, 2 H), 3.31 (t, 3 J = 6.6 Hz, 2 H), 5.55 (s, 1 H) ppm. 13C NMR (62.9 MHz, CDCl3): δ = 13.8 (q), 22.3 (t), 28.7 (q), 28.8 (t), 29.2 (t), 35.5 (t), 41.8 (t), 56.3 (s), 122.4 (d), 153.3 (s), 167.1 (s) ppm. HMRS (EI): m/z calcd for C13H23NO: 209.1780; found: 209.1782. Anal. Calcd for C13H23NO: C, 74.59; H, 11.07; N, 6.69. Found: C, 74.22; H, 11.30; N, 6.55.
22Representative Deprotection Procedure 4-(3-Cyclopentyloxy-4-methoxy-phenyl)-2-oxo-2,5-dihydro-pyrrole-1carboxylic acid tert-butyl ester (11i, 36 mg, 96.4 µmol) was dissolved in CH2Cl2 (2 mL) at r.t. and TFA (37 µl, 482 µmol) was added. After the reaction mixture was stirred at r.t. for 30 min the solvent and TFA were removed under reduced pressure. Purification by flash chromatography (EtOAc-MeOH, 9:1) yielded 4-(3-cyclopentyloxy-4-methoxy-phenyl)-1,5-dihydro-pyrrol-2-one (25.0 mg, 91.5 µmol, 95%) as colorless crystals. R f = 0.55 (EtOAc-MeOH, 9:1); mp 203-205 °C. 1H NMR (360 MHz, CDCl3): δ = 1.60-1.63 (m, 2 H), 1.81-1.95 (m, 6 H), 3.87 (s, 3 H), 4.37 (s, 2 H), 4.76-4.80 (m, 1 H), 6.29 (s, 1 H), 6.85 (d, 3 J = 8.4 Hz, 1 H), 7.01-7.04 (m, 2 H), 7.14 (s, br, 1 H) ppm. 13C NMR (90.6 MHz, CDCl3): δ = 24.2 (t), 32.9 (t), 48.5 (t), 56.2 (q), 81.0 (d), 111.9 (d), 112.8 (d), 118.2 (d), 119.2 (d), 124.9 (s), 148.1 (s), 152.3 (s), 157.9 (s), 175.8 (s) ppm. HMRS (EI): m/z calcd for C16H19NO3: 273.1365; found: 273.1361.