Zusammenfassung
Nachweis und Charakterisierung von primären und sekundären Leberläsionen sind von fundamentaler Bedeutung im Rahmen des Tumorstagings. Die Mehrschicht-Computertomografie (MSCT) und die kontrastverstärkte MRT zeigen die Vielzahl benigner und maligner Läsionen mit unterschiedlicher Bildmorphologie. Angesichts nicht selten gleichzeitig auftretender benigner und maligner Läsionen der Leber muss eine differenzialdiagnostische Befundklärung vor Planung multimodaler Therapiekonzepte angestrebt werden. Die Entwicklung der MSCT eröffnete die Möglichkeit zur hochauflösenden Volumenbildgebung in kurzer Messzeit. Die isotrope Voxelgeometrie mit Kantenlängen unter einem Millimeter ist eine Grundlage zur Weiterverarbeitung des Datensatzes mittels 2D- und 3D-Algorithmen. Es resultieren Rekonstruktionen der versorgenden und dränierenden Gefäße (CT-Angiografie), präzise Lebervolumetrien und eine Visualisierung komplexer Segmentanatomie mittels dedizierter Workstations. Unspezifische Kontrastmittel finden Einsatz in der Computertomografie (Jod) und MRT (Gadolinium-Chelate) seit mehr als zwei Jahrzehnten. Diese KM adressieren im Wesentlichen den Extrazellularraum der untersuchten Gewebe. In den letzten 10 Jahren entstanden neue Präparationen für die MRT mit einer verbesserter Gewebespezifität. Dieser Artikel diskutiert die diagnostischen Möglichkeiten moderner MSCT und MRT unter Verwendung verschiedener Kontrastmittel zur optimierten Detektion, Differenzialdiagnostik und Visualisierung von Lebertumoren.
Abstract
Since both malignant and benign lesions may occur concomitantly in the same patient, it is of decisive importance not only to detect but to characterize a lesion. This is particularly mandatory if a surgical procedure or multimodal therapy concepts are planned. An abundance of benign and malignant lesions with various appearances in Multi-Slice computed tomography (MSCT) and MR imaging can be found. The advent of Multi-Slice CT has offered the opportunity of multiphasic volume imaging rather than slice imaging. Submillimeter isotropic voxel geometry served as the reference data set to provide useful information in terms of vascular reconstruction, volumetry and 3D-segmental anatomy. Non-specific contrast agents have been used in abdominal CT (iodine) and MR imaging (gadolinium-chelates) for more than two decades. This category of contrast agents mainly addresses the extracellular space. Various efforts have been made over the last decade to develop contrast agents that combine the excellent contrast resolution of MRI with improved tissue specificity. This article discusses the capabilities of modern MSCT and MRI with various contrast media in the detection and differential diagnosis of hepatic neoplasm with regard to visualisation techniques to improve therapy planning.
Schlüsselwörter
Computertomografie - Magnetresonanztomografie - Kontrastmittel - hepatozelluläres Karzinom - Lebermetastasen
Key words
computed tomography - magnetic resonance imaging - contrast media - hepatocellular carcinoma - liver metastasis
Literatur
1
Hu H, He H D, Foley W D, Fox S H.
Four multidetector-row helical CT: image quality and volume coverage speed.
Radiology.
2000;
215
55-62
2 Prokop M. Image processing and display techniques. In: Prokop M, Galanski M. Spiral and multislice computed tomography of the body. Thieme, Stuttgart 2002; 131-160
3
Sahani D, Krishnamurthy S, Kalva S. et al .
Multidetector-row computed tomography angiography for planning intra-arterial chemotherapy pump placement in patients with colorectal metastases to the liver.
J Comput Assist Tomogr.
2004;
28
478-484
4
Pandharipande P V, Krinsky G A, Rusinek H, Lee V S.
Perfusion imaging of the liver: current challenges and future goals.
Radiology.
2000;
234
661-673
5
Fleischmann D.
Use of high concentration contrast media in multiple-detector-row CT: principles and rationale.
Eur Radiol.
2003;
13
14-20
6
Schoellnast H, Tillich M, Deutschmann H A. et al .
Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT.
Eur Radiol.
2004;
14
659-664
7
Teefey S A, Hildeboldt C C, Dehdashti F. et al .
Detection of primary malignancy in liver transplant candidates: prospective comparison of CT, MR imaging, US, and PET.
Radiology.
2003;
226
533-542
8
Gellissen J.
Contribution of magnetic resonance imaging to the diagnosis of hepatic neoplasm.
Sulud(i) Ciencia.
2006;
14
378-381
9
Carlos R C, Kim H M, Hussain H K. et al .
Developing a prediction rule to assess hepatic malignancy in patients with cirrhosis.
AJR.
2002;
180
893-900
10
Moro K, Scheidler J, Helmberger T. et al .
Detection of malignant hepatic lesions before orthotopic liver transplantation: accuracy of ferumoxides-enhanced MR imaging.
AJR.
2002;
179
1045-1051
11
Kwak H S, Lee J M, Kim C S.
Preoperative detection of hepatocellular carcinoma: comparison of combined contrast-enhanced MR imaging and combined CT during arterial portography and CT hepatic arteriography.
Eur Radiol.
2004;
14
447-457
12
Simon G, Link T M, Woertler K. et al .
Detection of hepatocellular carcinoma: comparison of Gd-DTPA and ferumoxides-enhanced MR imaging.
Eur Radiol.
2005;
15
895-903
13
Kim Y K, Kwak H S, Kim C S, Chung G H, Han Y M, Lee J M.
Hepatocellular carcinoma in patients with chronic liver disease: Comparison of SPIO-enhanced MR imaging and 16-detector-row CT.
Radiology.
2006;
238
531-541
14
Onishi H, Murakami T, Kim T, Hori M, Iannaccone R, Kuwabara M. et al .
Hepatic Metastases: Detection with Multi-Detector Row CT, SPIO-enhanced MR Imaging, and both techniques combined.
Radiology.
2006;
239
131-138
15
Kim Y K, Ko S W, Hwang S B, Kim C S, Yu C Y.
Detection and characterization of liver metastases: 16-slice multidetector computed tomography versus superparamagnetic iron oxide-enhanced magnetic resonance imaging.
Eur Radiol.
2006;
16
1337-1345
16
Amano S, Ebara M, Yajima T, Fukuda H, Yoshikawa M, Sugiura N. et al .
Assessment of cancer cell differentiation in small hepatocellular carcinoma by computed tomography and magnetic resonance imaging.
J Gastroenterol Hepatol.
2003;
18
273-279
17
Shimizu A, Ito K, Koike S. et al .
Cirrhosis or chronic hepatitis: Evaluation of small (< 2 cm) early-enhancing hepatic lesions with serial contrast-enhanced dynamic MR imaging.
Radiology.
2003;
226
550-555
18
Monzawa S, Ichikawa T, Nakajima H, Kitanaka Y, Omata K, Aralki T.
Dynamic CT for detecting small hepatocellular carcinoma: usefulness of delayed phase imaging.
AJR.
2007;
188
147-153
19
Regge D, Campanella D, Anselmettik G C, Cirillo S, Gallo T M, Muratore A. et al .
Diagnostic accuracy of portal-phase CT and MRI with mangafodipir trisodium in detecting liver metastases from colorectal carcinoma.
Clin Radiol.
2006;
61
338-347
20
Vogl T J, Schwarz W, Blume S. et al .
Preoperative evaluation of malignant liver tumors: comparison of unenhanced and SPIO (Resovist)-enhanced imaging with biphasic CTAP and intraoperative US.
Eur Radiol.
2003;
13
262-272
21
Stroszczynski C, Gaffke G, Gnauck M. et al .
Current status of MRI diagnostics with liver-specific contrast agents. Gd-EOB-DTPA and Gd-BOPTA.
Radiologe.
2004;
44
1185-1191
22
Sorensen A G.
Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging.
Radiology.
1996;
199
391-401
23
Taouli B.
Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients.
Radiology.
2003;
226
71-78
24
Demir O I.
Contribution of diffusion-weighted MRI to the differential diagnosis of hepatic masses.
Diagn Interv Radiol.
2007;
13
81-86
25
Okada Y.
Breath-hold T2 -weighted MRI of hepatic tumors: value of echo planar imaging with diffusion-sensitizing gradient.
J Comput Assist.
26
Koh D M.
Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging.
Eur Radiol.
2006;
16
1898-1905
27
Nisimine K.
Segmental transarterial chemoembolization with Lipiodol mixed with anticancer drugs for nonresectable hepatocellular carcinoma: follow-up CT and therapeutic results.
Cancer Chemother Pharmacol.
1994;
33 (suppl)
60-68
28
Ito K.
Therapeutic efficacy of transcatheter arterial chemoembolization for hepatocellular carcinoma: MRI and pathology.
J Comput Assist Tomogr.
1995;
19
198-203
29
Kubota K, Hisa N, Nishikawa T. et al .
Evaluation of hepatocellular carcinoma after treatment with transcatheter arterial chemoembolization: comparison of Lipiodol-CT, power Doppler sonography, and dynamic MRI.
Abdom Imaging.
2001;
26
184-190
30
Kim S K, Lim H K, Kim Y H. et al .
Hepatocellular carcinoma treated with radio-frequency ablation: spectrum of imaging findings.
RadioGraphics.
2003;
23
107-121
31
Lim H K, Choi D, Lee W J. et al .
Hepatocellular carcinoma treated with percutaneous radiofrequency ablation: evaluation with follow-up mulitphase helical CT.
Radiology.
2001;
221
447-454
Dr. med. J. Gellißen
Klinik für Radiologie und Nuklearmedizin · Universitätsklinikum Schleswig-Holstein - Campus Lübeck
Ratzeburger Allee 160
23538 Lübeck
Telefon: 04 51/5 00 64 47
Fax: 04 51/50 05 82 37 99
eMail: gellissen@radiologie.uni-luebeck.de