Geburtshilfe Frauenheilkd 2007; 67(6): 653-660
DOI: 10.1055/s-2007-965284
Translationale Forschung

Georg Thieme Verlag KG Stuttgart · New York

Die klinische Bedeutung des Nachweises von isolierten Tumorzellen im Knochenmark und peripheren Blut von Patientinnen mit primärem Mammakarzinom

Clinical Importance of the Detection of Isolated Tumor Cells in Bone Marrow and Peripheral Blood in Patients with Primary Breast CancerW. Janni1 , T. Fehm3 , B. Rack1 , V. Müller2 , E. Solomayer3 , E. Stickeler4 , H. Sommer1 , C. Schindlbeck1 , J. Jückstock1 , K. Friese1
  • 1Universitätsfrauenklinik Innenstadt LMU, München
  • 2Klinik und Poliklinik für Gynäkologie Universitätsklinikum Hamburg-Eppendorf
  • 3Universitätsfrauenklinik Tübingen, Tübingen
  • 4Universitätsfrauenklinik Freiburg, Freiburg
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. Juli 2007 (online)

Zusammenfassung

Trotz wesentlicher Fortschritte in der systemischen Therapie des Mammakarzinoms und deutlicher Prognoseverbesserung sind Rezidive nach oft langer Latenzzeit für diese Erkrankung charakteristisch. Ausgangspunkt für eine Fernmetastasierung sind in der Regel isolierte Tumorzellen, die bereits früh im Verlauf der Erkrankung hämatogen disseminieren. Der Nachweis dieser minimalen Tumorresiduen (minimal residual disease, MRD) ist mit konventionellen bildgebenden Verfahren nicht möglich. Der immunzytochemische Nachweis isolierter Tumorzellen im Knochenmark ist die am besten etablierte Methode, um Tumorresiduen zu detektieren. Die daraus gewonnenen Informationen über Prävalenz und Phänotyp der Tumorzellen lassen Rückschlüsse auf Tumorbiologie und individuelle Prognose zu, und könnten in Zukunft in der adjuvanten Situation zu einer Optimierung der Therapie führen. Die immunzytochemische Untersuchung des Knochenmarkes könnte die Beantwortung der von Patientinnen häufig gestellten Frage nach dem individuellen Erfolg adjuvanter Therapien in Zukunft erleichtern und Grundlage für die Einleitung einer „sekundär-adjuvanten Therapie“ im Rahmen der onkologischen Nachsorge sein. Außerhalb von klinischen Studien sollte der Nachweis von isolierten Tumorzellen allerdings derzeit nicht als Grundlage für eine Therapieentscheidung herangezogen werden.

Abstract

Minimal residual disease (MRD), i.e., isolated tumor cells (ITC) in bone marrow, may be the source of potentially fatal overt distant metastases in solid tumors even several years after primary treatment. MRD can be detected by immunohistochemical methods, using antibodies directed against cytokeratins, cell-surface markers, or molecular, PCR-based techniques. Among solid tumors, the clinical relevance of MRD has been most extensively studied in breast cancer patients. Recently, the highest level of evidence for the prognostic impact of MRD in primary breast cancer was reached by a pooled analysis comprising more than 4000 patients, showing poor outcomes in patients with MRD at primary therapy. Yet clinical application of MRD detection is hampered by the lack of a standardized detection assay. Moreover, clinical trial results demonstrating the benefit of therapeutic interference based on bone marrow status are still lacking. Recent results suggest that in addition to its prognostic impact, MRD can be used for therapy monitoring or as a potential therapeutic target after phenotyping of the tumor cells. Persisting MRD after primary treatment may lead to an indication for extended adjuvant therapy. However, until the clinical consequences of MRD detection in solid tumors and particularly in breast cancer have been validated, the detection of isolated tumor cells in bone marrow should be performed mainly in clinical trials.

Literatur

  • 1 Parkin D M, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002.  CA Cancer J Clin. 2005;  55 74-108
  • 2 Rosner D, Lane W W. Predicting recurrence in axillary-node negative breast cancer patients.  Breast Cancer Res Treat. 1993;  25 127-139
  • 3 Jauch K W, Heiss M M, Gruetzner U, Funke I, Pantel K, Babic R, Eissner H J, Riethmueller G, Schildberg F W. Prognostic significance of bone marrow micrometastases in patients with gastric cancer.  J Clin Oncol. 1996;  14 1810-1817
  • 4 Lindemann F, Schlimok G, Dirschedl P, Witte J, Riethmuller G. Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients.  Lancet. 1992;  340 685-689
  • 5 Weckermann D, Wawroschek F, Krawczak G, Haude K H, Harzmann R. Does the immunocytochemical detection of epithelial cells in bone marrow (micrometastasis) influence the time to biochemical relapse after radical prostatectomy?.  Urol Res. 1999;  27 285-290
  • 6 Cote R J, Beattie E J, Chaiwun B, Shi S R, Harvey J, Chen S C, Sherrod A E, Groshen S, Taylor C R. Detection of occult bone marrow micrometastases in patients with operable lung carcinoma.  Ann Surg. 1995;  222 415-423
  • 7 Pantel K, Cote R J, Fodstad O. Detection and clinical importance of micrometastatic disease.  J Natl Cancer Inst. 1999;  91 1113-1124
  • 8 Braun S, Vogl F D, Naume B, Janni W, Osborne M P, Coombes R C, Schlimok G, Diel I J, Gerber B, Gebauer G, Pierga J Y, Marth C, Oruzio D, Wiedswang G, Solomayer E F, Kundt G, Strobl B, Fehm T, Wong G Y, Bliss J, Vincent-Salomon A, Pantel K. A pooled analysis of bone marrow micrometastasis in breast cancer.  N Engl J Med. 2005;  353 793-802
  • 9 Janni W, Rack B, Schindlbeck C, Strobl B, Rjosk D, Braun S, Sommer H, Pantel K, Gerber B, Friese K. The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence.  Cancer. 2005;  103 884-891
  • 10 Wiedswang G, Borgen E, Karesen R, Qvist H, Janbu J, Kvalheim G, Nesland J M, Naume B. Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome.  Clin Cancer Res. 2004;  10 5342-5348
  • 11 Woelfle U, Sauter G, Santjer S, Brakenhoff R, Pantel K. Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer.  Clin Cancer Res. 2004;  10 2670-2674
  • 12 Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich C R, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer.  N Engl J Med. 2000;  342 525-533
  • 13 Gangnus R, Langer S, Breit E, Pantel K, Speicher M R. Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients.  Clin Cancer Res. 2004;  10 3457-3464
  • 14 Klein C A, Blankenstein T J, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein N H, Riethmuller G. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer.  Lancet. 2002;  360 683-689
  • 15 Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein T J, Kaufmann M, Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmuller G, Eils R, Klein C A. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression.  Proc Natl Acad Sci USA. 2003;  100 7737-7742
  • 16 Bostick P J, Chatterjee S, Chi D D, Huynh K T, Giuliano A E, Cote R, Hoon D S. Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients.  J Clin Oncol. 1998;  16 2632-2640
  • 17 Zippelius A, Kufer P, Honold G, Kollermann M W, Oberneder R, Schlimok G, Riethmuller G, Pantel K. Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow.  J Clin Oncol. 1997;  15 2701-2708
  • 18 Xenidis N, Perraki M, Kafousi M, Apostolaki S, Bolonaki I, Stathopoulou A, Kalbakis K, Androulakis N, Kouroussis C, Pallis T, Christophylakis C, Argyraki K, Lianidou E S, Stathopoulos S, Georgoulias V, Mavroudis D. Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients.  J Clin Oncol. 2006;  24 3756-3762
  • 19 Fehm T, Braun S, Muller V, Janni W, Gebauer G, Marth C, Schindlbeck C, Wallwiener D, Borgen E, Naume B, Pantel K, Solomayer E. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation.  Cancer. 2006;  107 885-892
  • 20 Fox S B, Leek R D, Bliss J, Mansi J L, Gusterson B, Gatter K C, Harris A L. Association of tumor angiogenesis with bone marrow micrometastases in breast cancer patients.  J Natl Cancer Inst. 1997;  89 1044-1049
  • 21 Schindlbeck C, Janni W, Schaffer P, Shabani N, Schmitt M, Harbeck N, Sommer H, Braun S. Tumor biology of primary breast cancer and minimal residual disease.  Acta Med Austriaca. 2002;  29 27-31
  • 22 Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland J M, Qvist H, Schlichting E, Sauer T, Janbu J, Harbitz T, Naume B. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer.  J Clin Oncol. 2003;  21 3469-3478
  • 23 Rack B, Janni W, Schobert A, Kentenich C, Strobl B, Klanner E, Schindlbeck C, Sommer H. Expression of HER2-neu on disseminated tumor cells in the bone marrow of breast cancer patients.  J Cancer Res Clin Oncol. 2003;  127 15
  • 24 Yarden Y. Biology of HER2 and its importance in breast cancer.  Oncology. 2001;  61 1-13
  • 25 Naume B, Borgen E, Kvalheim G, Karesen R, Qvist H, Sauer T, Kumar T, Nesland J M. Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients: comparison with preoperative clinical parameters and primary tumor characteristics.  Clin Cancer Res. 2001;  7 4122-4129
  • 26 Solomayer E F, Becker S, Pergola-Becker G, Bachmann R, Kramer B, Vogel U, Neubauer H, Wallwiener D, Huober J, Fehm T N. Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients.  Breast Cancer Res Treat. 2006;  98 179-184
  • 27 Schindlbeck C, Janni W, Shabani N, Rack B, Gerber B, Schmitt M, Harbeck N, Sommer H, Braun S, Friese K. Comparative analysis between the HER2 status in primary breast cancer tissue and the detection of isolated tumor cells in the bone marrow.  Breast Cancer Res Treat. 2004;  87 65-74
  • 28 Leek R D. The prognostic role of angiogenesis in breast cancer.  Anticancer Res. 2001;  21 4325-4331
  • 29 Sapino A, Bongiovanni M, Cassoni P, Righi L, Arisio R, Deaglio S, Malavasi F. Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast.  J Pathol. 2001;  194 254-261
  • 30 Herrera-Gayol A, Jothy S. Adhesion proteins in the biology of breast cancer: contribution of CD44.  Exp Mol Pathol. 1999;  66 149-156
  • 31 Coon J S, Marcus E, Gupta-Burt S, Seelig S, Jacobson K, Chen S, Renta V, Fronda G, Preisler H D. Amplification and overexpression of topoisomerase II alpha predict response to anthracycline-based therapy in locally advanced breast cancer.  Clin Cancer Res. 2002;  8 1061-1067
  • 32 MacGrogan G, Rudolph P, Mascarel-Id I, Mauriac L, Durand M, Avril A, Dilhuydy J M, Robert J, Mathoulin-Pelissier S, Picot V, Floquet A, Sierankowski G, Coindre J M. DNA topoisomerase II alpha expression and the response to primary chemotherapy in breast cancer.  Br J Cancer. 2003;  89 666-671
  • 33 Park K, Kim J, Lim S, Han S. Topoisomerase II-alpha (topoII) and HER2 amplification in breast cancers and response to preoperative doxorubicin chemotherapy.  Eur J Cancer. 2003;  39 631-634
  • 34 Rudolph P, MacGrogan G, Bonichon F, Frahm S O, de Mascarel I, Trojani M, Durand M, Avril A, Coindre J M, Parwaresch R. Prognostic significance of Ki-67 and topoisomerase II alpha expression in infiltrating ductal carcinoma of the breast. A multivariate analysis of 863 cases.  Breast Cancer Res Treat. 1999;  55 61-71
  • 35 Schindlbeck C, Janni W, Shabani N, Kornmeier A, Rack B, Rjosk D, Gerber B, Braun S, Sommer H, Friese K. Isolated tumor cells in the bone marrow (ITC‐BM) of breast cancer patients before and after anthracyclin based therapy: influenced by the HER2- and Topoisomerase II alpha-status of the primary tumor?.  J Cancer Res Clin Oncol. 2005;  131 539-546
  • 36 Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki J R, Riethmuller G. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells.  J Natl Cancer Inst. 1993;  85 1419-1424
  • 37 Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmuller G. Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells.  Cancer Res. 1991;  51 4712-4715
  • 38 Solomayer E F, Diel I J, Meyberg G C, Gollan C, Bode S, Wallwiener D, Bastert G. Prognostic relevance of cathepsin D detection in micrometastatic cells in the bone marrow of patients with primary breast cancer.  Breast Cancer Res Treat. 1998;  49 145-154
  • 39 Solomayer E F, Diel I J, Wallwiener D, Bode S, Meyberg G, Sillem M, Gollan C, Kramer M D, Krainick U, Bastert G. Prognostic relevance of urokinase plasminogen activator detection in micrometastatic cells in the bone marrow of patients with primary breast cancer.  Br J Cancer. 1997;  76 812-818
  • 40 DeVita V TJ. Breast cancer therapy: exercising all our options.  N Engl J Med. 1989;  320 527-529
  • 41 Rosner D, Lane W W. Predicting recurrence in axillary-node negative breast cancer patients.  Breast Cancer Res Treat. 1993;  25 127-139
  • 42 Cote R J, Rosen P P, Lesser M L, Old L J, Osborne M P. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases.  J Clin Oncol. 1991;  9 1749-1756
  • 43 Diel I J, Kaufmann M, Costa S D, Holle R, von Minckwitz G, Solomayer E F, Kaul S, Bastert G. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status.  J Natl Cancer Inst. 1996;  88 1652-1658
  • 44 Gebauer G, Fehm T, Merkle E, Beck E P, Lang N, Jager W. Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up.  J Clin Oncol. 2001;  19 3669-3674
  • 45 Gerber B, Krause A, Muller H, Richter D, Reimer T, Makovitzky J, Herrnring C, Jeschke U, Kundt G, Friese K. Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors.  J Clin Oncol. 2001;  19 960-971
  • 46 Harbeck N, Untch M, Pache L, Eiermann W. Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up.  Br J Cancer. 1994;  69 566-571
  • 47 Landys K, Persson S, Kovarik J, Hultborn R, Holmberg E. Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: Results of a 20-year median follow-up.  Breast Cancer Res Treat. 1998;  49 27-33
  • 48 Mansi J L, Gogas H, Bliss J M, Gazet J C, Berger U, Coombes R C. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study.  Lancet. 1999;  354 197-202
  • 49 Ridell B, Landys K. Incidence and histopathology of metastases of mammary carcinoma in biopsies from the posterior iliac crest.  Cancer. 1979;  44 1782-1788
  • 50 Pantel K, Muller V, Auer M, Nusser N, Harbeck N, Braun S. Detection and clinical implications of early systemic tumor cell dissemination in breast cancer.  Clin Cancer Res. 2003;  9 6326-6334
  • 51 Braun S, Pantel K. Prognostic significance of micrometastatic bone marrow involvement.  Breast Cancer Res Treat. 1998;  52 201-216
  • 52 Pantel K, Felber E, Schlimok G. Detection and characterization of residual disease in breast cancer.  J Hematother. 1994;  3 315-322
  • 53 Borgen E, Naume B, Nesland J M, Nowels K W, Pavlak N, Ravkin I, Goldbard S. Use of automated microscopy for the detection of disseminated tumor cells in bone marrow samples.  Cytometry. 2001;  46 215-221
  • 54 Borgen E, Beiske K, Trachsel S, Nesland J M, Kvalheim G, Herstad T K, Schlichting E, Qvist H, Naume B. Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase.  J Pathol. 1998;  185 427-434
  • 55 Putz E, Witter K, Offner S, Stosiek P, Zippelius A, Johnson J, Zahn R, Riethmuller G, Pantel K. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases.  Cancer Res. 1999;  59 241-248
  • 56 Weckermann D, Muller P, Wawroschek F, Krawczak G, Riethmuller G, Schlimok G. Micrometastases of bone marrow in localized prostate cancer: correlation with established risk factors.  J Clin Oncol. 1999;  17 3438-3443
  • 57 Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, Beitsch P, Khan A, Euhus D, Osborne C, Frenkel E, Hoover S, Leitch M, Clifford E, Vitetta E, Morrison L, Herlyn D, Terstappen L W, Fleming T, Fehm T, Tucker T, Lane N, Wang J, Uhr J. HER‐2 gene amplification can be acquired as breast cancer progresses.  Proc Natl Acad Sci USA. 2004;  101 9393-9398
  • 58 Solakoglu O, Maierhofer C, Lahr G, Breit E, Scheunemann P, Heumos I, Pichlmeier U, Schlimok G, Oberneder R, Kollermann M W, Kollermann J, Speicher M R, Pantel K. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors.  Proc Natl Acad Sci USA. 2002;  99 2246-2251
  • 59 Braun S, Vogl F, Schlimok G, Diel I, Janni W, Gerber B, Gebauer G, Coombes R C, Pierga J-Y, Naume B, Pantel K. Pooled analysis of prognostic impact of bone marrow micrometastases: 10 year survival 4199 breast cancer patients.  Breast Cancer Res Treat. 2003;  67 (Suppl.)
  • 60 Diel I J, Solomayer E F, Costa S D, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G. Reduction in new metastases in breast cancer with adjuvant clodronate treatment.  N Engl J Med. 1998;  339 357-363
  • 61 Schlimok G, Funke I, Holzmann B, Gottlinger G, Schmidt G, Hauser H, Swierkot S, Warnecke H H, Schneider B, Koprowski H. et al . Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies.  Proc Natl Acad Sci USA. 1987;  84 8672-8676
  • 62 Fields K K, Elfenbein G J, Trudeau W L, Perkins J B, Janssen W E, Moscinski L C. Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation.  J Clin Oncol. 1996;  14 1868-1876
  • 63 Datta Y H, Adams P T, Drobyski W R, Ethier S P, Terry V H, Roth M S. Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction.  J Clin Oncol. 1994;  12 475-482
  • 64 Vannucchi A M, Bosi A, Glinz S, Pacini P, Linari S, Saccardi R, Alterini R, Rigacci L, Guidi S, Lombardini L, Longo G, Mariani M P, Rossi-Ferrini P. Evaluation of breast tumour cell contamination in the bone marrow and leukapheresis collections by RT‐PCR for cytokeratin-19 mRNA.  Br J Haematol. 1998;  103 610-617
  • 65 Courtemanche D J, Worth A J, Coupland R W, MacFarlane J K. Detection of micrometastases from primary breast cancer.  Can J Surg. 1991;  34 15-19
  • 66 Funke I, Fries S, Rolle M, Heiss M M, Untch M, Bohmert H, Schildberg F W, Jauch K W. Comparative analyses of bone marrow micrometastases in breast and gastric cancer.  Int J Cancer. 1996;  65 755-761
  • 67 Molino A, Pelosi G, Turazza M, Sperotto L, Bonetti A, Nortilli R, Fattovich G, Alaimo C, Piubello Q, Pavanel F, Micciolo R, Cetto G L. Bone marrow micrometastases in 109 breast cancer patients: correlations with clinical and pathological features and prognosis.  Breast Cancer Res Treat. 1997;  42 23-30
  • 68 Porro G, Menard S, Tagliabue E, Orefice S, Salvadori B, Squicciarini P, Andreola S, Rilke F, Colnaghi M I. Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients.  Cancer. 1988;  61 2407-2411
  • 69 Salvadori B, Squicciarini P, Rovini D, Orefice S, Andreola S, Rilke F, Barletta L, Menard S, Colnaghi M I. Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens of breast cancer patients.  Eur J Cancer. 1990;  26 865-867
  • 70 Slade M J, Smith B M, Sinnett H D, Cross N C, Coombes R C. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer.  J Clin Oncol. 1999;  17 870-879
  • 71 Untch M, Kahlert S, Funke I, Boettcher B, Konecny G, Nestle-Kraemling C, Bauernfeind I. Detection of cytokeratin (CK) 18 positive cells in the bone marrow (BM) of breast cancer patients - no prediction of bad outcome.  Proc ASCO. 1999;  18 693a-Abstract 693
  • 72 Mathieu M C, Friedman S, Bosq J, Caillou B, Spielmann M, Travagli J P, Contesso G. Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis in breast cancer.  Breast Cancer Res Treat. 1990;  15 21-26
  • 73 Singletary S E, Larry L, Tucker S L, Spitzer G. Detection of micrometastatic tumor cells in bone marrow of breast carcinoma patients.  J Surg Oncol. 1991;  47 32-36
  • 74 Funke I, Schraut W. Meta-analyses of studies on bone marrow micrometastases: an independent prognostic impact remains to be substantiated.  J Clin Oncol. 1998;  16 557-566
  • 75 Pantel K, Schlimok G, Angstwurm M, Weckermann D, Schmaus W, Gath H, Passlick B, Izbicki J R, Riethmuller G. Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow.  J Hematother. 1994;  3 165-173
  • 76 Braun S, Vogl F D, Naume B, Janni W, Osborne M P, Coombes R C, Schlimok G, Diel I J, Gerber B, Gebauer G, Pierga J Y, Marth C, Oruzio D, Wiedswang G, Solomayer E F, Kundt G, Strobl B, Fehm T, Wong G Y, Bliss J, Vincent-Salomon A, Pantel K. A pooled analysis of bone marrow micrometastasis in breast cancer.  N Engl J Med. 2005;  353 793-802
  • 77 Goldhirsch A, Glick J H, Gelber R D, Coates A S, Thurlimann B, Senn H J. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005.  Ann Oncol. 2005;  16 1569-1583
  • 78 Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H, Pantel K. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients.  J Clin Oncol. 2000;  18 80-86
  • 81 Janni W, Wiedswang G, Fehm T, Jückstock J, Borgen E, Rack B, Braun S, Sommer H, Solomayer E F, Pantel K, Nesland J M, Friese K, Naume B. Persistence of disseminated tumor cells (DTC) in bone marrow (BM) during follow-up predicts increased risk for relapse - Up-date of the pooled European data.  Breast Cancer Res Treat. 2006;  70
  • 82 Coombes R C, Berger U, Mansi J, Redding H, Powles T J, Neville A M, McKinna A, Nash A G, Gazet J C, Ford H T. et al . Prognostic significance of micrometastases in bone marrow in patients with primary breast cancer.  NCI Monogr. 1986;  1 51-53
  • 83 Kirk S J, Cooper G G, Hoper M, Watt P C, Roy A D, Odling-Smee W. The prognostic significance of marrow micrometastases in women with early breast cancer.  Eur J Surg Oncol. 1990;  16 481-485
  • 84 Dearnaley D P, Ormerod M G, Sloane J P. Micrometastases in breast cancer: long-term follow-up of the first patient cohort.  Eur J Cancer. 1991;  27 236-239

PD Dr. med. Wolfgang Janni

Frauenklinik Innenstadt der LMU München

Maistraße 11

80337 München

eMail: wolfgang.janni@med.uni-muenchen.de

    >