Semin Liver Dis 2007; 27(1): 044-054
DOI: 10.1055/s-2006-960170
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Genetics of Alcoholic Liver Disease and Nonalcoholic Fatty Liver Disease

Nimantha Mark Wilfred de Alwis1 , 2 , Christopher Paul Day1 , 2
  • 1School of Clinical Medical Sciences, The Medical School, Newcastle upon Tyne, United Kingdom
  • 2Liver Research Group, Institute of Cellular Medicine, Newcastle University, United Kingdom
Further Information

Publication History

Publication Date:
12 February 2007 (online)

ABSTRACT

Although the vast majority of heavy drinkers and individuals with obesity, insulin resistance, and the metabolic syndrome have steatosis, only a minority ever develop steatohepatitis, fibrosis, and cirrhosis. Genetic and environmental risk factors for advanced alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) seem likely to include factors that influence the severity of steatosis and oxidative stress, the cytokine milieu, the magnitude of the immune response, and/or the severity of liver fibrosis. For ALD, the dose and pattern of alcohol intake, coffee intake, and dietary and other lifestyle factors leading to obesity are the most important environmental determinants of disease risk. For NAFLD, dietary saturated fat and antioxidant intake, small bowel bacterial overgrowth, and obstructive sleep apnea syndrome may play a role. Family studies and interethnic variations in susceptibility suggest that genetic factors are important in determining disease risk. For ALD, functional polymorphisms in the ADH and ALDH alcohol metabolizing genes play a role in determining susceptibility in Oriental populations. No genetic associations with advanced NAFLD have been replicated in large studies. Preliminary data suggest that polymorphisms in the genes encoding microsomal triglyceride transfer protein, superoxide dismutase 2, the CD14 endotoxin receptor, tumor necrosis factor α, transforming growth factor β, and angiotensinogen may be associated with steatohepatitis or hepatic fibrosis or both.

REFERENCES

  • 1 Neuschwander-Tetri B A, Caldwell S H. Non alcoholic steatohepatitis: summary of an AASLD single topic conference.  Hepatology. 2003;  37 1202-1219
  • 2 Bellentani S, Saccoccio G, Costa G et al.. Drinking habits as cofactors of risk for alcohol induced liver damage. The Dionysos Study Group.  Gut. 1997;  41 845-850
  • 3 Wanless I R, Lentz J S. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors.  Hepatology. 1990;  12 1106-1110
  • 4 Dixon J B, Bhathal P S, O'Brian P E. Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese.  Gastroenterology. 2001;  121 91-100
  • 5 Stewart S, Jones D, Day C P. Alcoholic liver disease: new insights into mechanisms and preventative strategies.  Trends Mol Med. 2001;  7 408-413
  • 6 Day C P. Pathogenesis of steatohepatitis.  Best Pract Res Clin Gastroenterol. 2002;  16 663-678
  • 7 Day C P. From fat to inflammation.  Gastroenterology. 2006;  130 207-210
  • 8 Stewart S F, Vidali M, Day C P et al.. Oxidative stress as a trigger for cellular immune responses in patients with alcoholic liver disease.  Hepatology. 2004;  39 197-203
  • 9 Hui J M, Hodge A, Farrell G C et al.. Beyond insulin resistance in NASH: TNF-alpha or adiponectin?.  Hepatology. 2004;  40 46-54
  • 10 Xu A, Wang Y, Keshaw H et al.. The fat-derived hormone adiponectin alleviates alcoholic and non-alcoholic fatty liver disease in mice.  J Clin Invest. 2003;  112 91-100
  • 11 Grove J, Daly A, Brown A et al.. The Rsa polymorphism of CYP2E1 and susceptibility to alcoholic liver disease in Caucasians: effect on age of presentation and dependence on alcohol dehydrogenase genotype.  Pharmacogenetics. 1998;  8 335-342
  • 12 Becker U, Gronbaek M, Johansen D, Sorensen T I. Lower risk for alcohol-induced cirrhosis in wine drinkers.  Hepatology. 2002;  35 868-875
  • 13 Johansen D, Friis K, Skovenborg E, Gronbaek M. Food buying habits of people who buy wine or beer: cross sectional study.  BMJ. 2006;  332 519-522
  • 14 Rotily M, Durbec J, Berthezene P, Sarles H. Diet and alcohol in liver cirrhosis: a case-control study.  Eur J Clin Nutr. 1990;  44 595-603
  • 15 Klatsky A L, Morton C, Udaltsova N, Friedman G D. Coffee, cirrhosis, and transaminase enzymes.  Arch Intern Med. 2006;  166 1190-1195
  • 16 Raynard B, Balian A, Fallick D et al.. Risk factors of fibrosis in alcohol-induced liver disease.  Hepatology. 2002;  35 635-638
  • 17 Musso G, Gambino R, De Michieli F et al.. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis.  Hepatology. 2003;  37 909-916
  • 18 Wigg A J, Roberts-Thomson I C, Dymock R B, McCarthy P J, Grose R H, Cummins A G. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor in the pathogenesis of non-alcoholic steatohepatitis.  Gut. 2001;  48 206-211
  • 19 Tanne F, Gagnadoux F, Chazouilleres O et al.. Chronic liver injury during obstructive sleep apnea.  Hepatology. 2005;  41 1290-1296
  • 20 Hrubec Z, Omenn G. Evidence for genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans.  Alcohol Clin Exp Res. 1981;  5 207-215
  • 21 Stinson F S, Grant B F, Dufour M C. The critical dimension of ethnicity in liver cirrhosis mortality statistics.  Alcohol Clin Exp Res. 2001;  25 1181-1187
  • 22 Caetano R, Clark C L. Trends among alcohol related problems among whites, blacks, and Hispanics: 1984-1995.  Alcohol Clin Exp Res. 1998;  22 534-538
  • 23 Struben V MD, Hespenheide E E, Caldwell S H. Nonalcoholic steatohepatitis and cryptogenic cirrhosis within kindreds.  Am J Med. 2000;  108 9-13
  • 24 Willner I R, Waters B, Patil S R et al.. Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease.  Am J Gastroenterol. 2001;  96 2957-2961
  • 25 Browning J D, Kumar J S, Saboorian M H, Theile D L. Ethnic differences in the prevalence of cryptogenic cirrhosis.  Am J Gastroenterol. 2004;  99 292-298
  • 26 Caldwell S H, Harris D M, Patrie J T, Hespenheide E E. Is NASH underdiagnosed among African Americans?.  Am J Gastroenterol. 2002;  97 1496-1500
  • 27 Daly A K, Day C P. Candidate gene case-control association studies: advantages and potential pitfalls.  Br J Clin Pharmacol. 2001;  52 489-499
  • 28 Rangnekar A S, Lammert F, Igolnikov A, Green R M. Quantitative trait loci analysis of mice administered the methionine-choline deficient dietary model of experimental steatohepatitis.  Liver Int. 2006;  26 1000-1005
  • 29 Deaciuc I V, Arteel G E, Peng X et al.. Gene expression in the liver of rats fed alcohol by means of intragastric infusion.  Alcohol. 2004;  33 17-30
  • 30 Baranova A, Schlauch K, Gowder S et al.. Microarray technology in the study of obesity and non alcoholic fatty liver disease.  Liver Int. 2005;  25 1091-1096
  • 31 Shackel N A, McGuiness P H, Abbot C A et al.. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis.  Gut. 2001;  49 565-576
  • 32 Shackel N A, McGuiness P H, Abbot C A et al.. Insights into the pathobiology of Hepatitis C virus associated cirrhosis: analysis of intrahepatic differential gene expression.  Am J Pathol. 2002;  160 641-654
  • 33 Seth D, Gorrell M D, Cordoba S et al.. Intrahepatic gene expression in human alcoholic hepatitis.  J Hepatol. 2006;  45 306-320
  • 34 Sreekumar R, Rosado B, Rasmussen D, Charlton M. Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis.  Hepatology. 2003;  38 244-251
  • 35 Younossi Z M, Gorreta F, Ong J P et al.. Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis.  Liver Int. 2005;  25 760-771
  • 36 Issaq H J, Conrads T P, Prieto D A et al.. SELDI-TOF MS for diagnostic proteomics.  Anal Chem. 2003;  75 148A-155A
  • 37 Younossi Z M, Baranova A, Ziegler K et al.. A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease.  Hepatology. 2005;  42 665-674
  • 38 Day C P, Bassendine M F. Genetic predisposition to alcoholic liver disease.  Gut. 1992;  33 1444-1447
  • 39 Enomoto N, Yamashina S, Schemmer P et al.. Estriol sensitizes rat Kupffer cells via gut-derived endotoxin.  Am J Physiol. 1999;  277 G671-G677
  • 40 Ludwig J, Viggiano T R, McGill D B, Ott B J. Nonalcoholic steatohepatitis. Mayo Clinic experiences with a hitherto unnamed disease.  Mayo Clin Proc. 1980;  55 434-438
  • 41 Clark J M, Bracanti F L, Diehl A M. Nonalcoholic fatty liver disease.  Gastroenterology. 2002;  122 1649-1657
  • 42 Ostberg J E, Thomas E L, Hamilton G et al.. Excess visceral and hepatic adipose tissue in Turner syndrome determined by magnetic resonance imaging: estrogen deficiency associated with hepatic adipose content.  J Clin Endocrinol Metab. 2005;  90 2631-2635
  • 43 Bruno S, Maisonneuve P, Castellana P et al.. Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial.  BMJ. 2005;  330 932
  • 44 Shimizu I. Impact of oestrogens on the progression of liver disease.  Liver Int. 2003;  23 63-69
  • 45 Ameen C, Oscarsson J. Sex difference in hepatic microsomal triglyceride transfer protein expression is determined by the growth hormone secretory pattern in the rat.  Endocrinology. 2003;  144 3914-3921
  • 46 Lonardo A, Carani C, Carulli N, Loria P. “Endocrine NAFLD” a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis.  J Hepatol. 2006;  44 1196-1207
  • 47 Day C P, James O F. Hepatic steatosis: innocent bystander or guilty party?.  Hepatology. 1998;  27 1463-1466
  • 48 Namikawa C, Shu-Ping Z, Vyselaar J et al.. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in nonalcoholic steatohepatitis.  J Hepatol. 2004;  40 781-786
  • 49 Bernard S, Touzet S, Personne I et al.. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes.  Diabetologia. 2000;  43 995-999
  • 50 Day C P, Leathart J B, Daly A. Genetic evidence that fatty liver is involved in the pathogenesis of advanced alcoholic liver disease.  Hepatology. 2002;  36(suppl 1) 16
  • 51 Song J, da Costa K A, Fischer L M et al.. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD).  FASEB J. 2005;  19 1266-1271
  • 52 Zintzaras E, Stefanidis I, Santos M, Vidal F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease?.  Hepatology. 2006;  43 352-361
  • 53 Grove J, Daly A, Burt A et al.. Heterozygotes for HFE mutations have no increased risk of advanced alcoholic liver disease.  Gut. 1998;  43 262-266
  • 54 Savolainen V T, Pajarinen J, Perola M. Glutathione S-Transferase GSTM “null” genotype and the risk of alcoholic liver disease.  Alcohol Clin Exp Res. 1996;  20 1340-1345
  • 55 Ladero J M, Martinez C, Garcia-Martin E et al.. Polymorphisms of the glutathione S-transferase mi-1 (GSTM1) and theta 1 (GSTT1) and the risk of advanced alcoholic liver disease.  Scand J Gastroenterol. 2005;  40 348-353
  • 56 Adachi M, Ishii H. Role of mitochondria in alcoholic liver disease.  Free Radic Biol Med. 2002;  32 487-491
  • 57 Sutton A, Imbert A, Igoudjil A et al.. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability.  Pharmacogenet Genomics. 2005;  15 311-319
  • 58 Sutton A, Khoury H, Prip-Buus C et al.. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria.  Pharmacogenetics. 2003;  13 145-157
  • 59 Degoul F, Sutton A, Mansouri A et al.. Homozygosity for alanine in the mitochondrial targeting sequence of superoxide dismutase and risk for severe alcoholic liver disease.  Gastroenterology. 2001;  120 1468-1474
  • 60 Stewart S F, Leathart J B, Chen Y et al.. The valine-alanine manganese superoxide dismutase polymorphism is not associated with increased oxidative stress or susceptibility to advanced alcoholic liver disease.  Hepatology. 2002;  36 1355-1360
  • 61 Sanyal A J, Campbell-Sargent C, Mirshahi F et al.. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities.  Gastroenterology. 2001;  120 1183-1192
  • 62 Miele L, Grieco A, Armuzzi A et al.. Nonalcoholic steatohepatitis (NASH) and hepatic mitochondrial beta oxidation: hepatic mitochondrial betaoxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test.  Am J Gastroenterol. 2003;  98 2335-2365
  • 63 Fan C Y, Pan J, Usuda N et al.. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase: implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism.  J Biol Chem. 1998;  273 15639-15645
  • 64 Merriman R, Aouizerat B, Molloy M et al.. A genetic mutation in the peroxisome proliferator-activated receptor alpha gene in patients with non-alcoholic steatohepatitis.  Hepatology. 2001;  34 441A
  • 65 Berger J, Moller D. The mechanism of action of PPARs.  Annu Rev Med. 2002;  53 409-435
  • 66 Sapone A, Peters J, Sakai S et al.. The human peroxisome proliferator-activated receptor gene: identification and functional characterization of two natural allelic variants.  Pharmacogenetics. 2000;  10 321-323
  • 67 Ip E, Farrell G, Robertson G et al.. Central role of PPAR-dependent hepatic lipid turnover in dietary steatohepatitis in mice.  Hepatology. 2003;  38 123-132
  • 68 Yamauchi T, Kamon J, Minokoshi Y et al.. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.  Nat Med. 2002;  8 1288-1295
  • 69 George D K, Goldwurm S, MacDonald G A et al.. Increased hepatic iron concentration in non-alcoholic steatohepatitis is associated with increased fibrosis.  Gastroenterology. 1998;  114 311-318
  • 70 Bugianesi E, Manzini P, D'Antico S et al.. Relative contribution of iron burden, HFE mutations and insulin resistance to fibrosis in nonalcoholic fatty liver.  Hepatology. 2004;  39 179-187
  • 71 Saksena S, Daly A, Leathart J, Day C. Manganese dependent superoxide dismutase (SOD2) targeting sequence polymorphism is associated with advanced fibrosis in patients with non-alcoholic fatty liver disease.  J Hepatol. 2003;  38(suppl 2) 47
  • 72 Baldini M, Lohman I, Halonen M et al.. A polymorphism* in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E.  Am J Respir Cell Mol Biol. 1999;  20 976-983
  • 73 Järveläinen H A, Orpana A, Perola M et al.. Promoter polymorphism of the CD14 endotoxin receptor gene as a risk factor for alcoholic liver disease.  Hepatology. 2001;  33 1148-1153
  • 74 Leathart J, Day C, Daly A. No association between functional SNPs in the endotoxin receptors CD14 and TLR4 and alcoholic liver disease (ALD): is endotoxin important in the pathogenesis of ALD in humans?.  Hepatology. 2001;  34 459A
  • 75 Arbour N C, Lorenz E, Schutte B C et al.. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans.  Nat Genet. 2000;  25 187-191
  • 76 Day C. CD14 promoter polymorphism associated with risk of NASH.  J Hepatol. 2002;  36(suppl 1) 21
  • 77 Grove J, Daly A, Bassendine M, Day C. Association of a tumor necrosis factor polymorphism with susceptibility to alcoholic steatohepatitis.  Hepatology. 1997;  26 143-146
  • 78 Valenti L, Fracanzani A L, Dongiovanni P et al.. Tumour necrosis factor promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease.  Gastroenterology. 2002;  122 274-280
  • 79 Pastor I J, Laso F J, Romero A, Gonzalez-Sarmiento R. -238 G/A polymorphism of tumour necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men.  Alcohol Clin Exp Res. 2005;  29 1928-1931
  • 80 Grove J, Daly A, Bassendine M et al.. Polymorphism associated with low interleukin-10 production is a risk factor for associated alcoholic liver disease.  Gut. 2000;  46 540-545
  • 81 Takamatsu M, Yamauchi M, Maezawa Y et al.. Genetic polymorphisms of interleukin 1beta in association with the development of alcoholic liver disease in Japanese patients.  Am J Gastroenterol. 2000;  95 1305-1311
  • 82 Vidali M, Stewart S, Rolla R et al.. Genetic and epigenetic factors in auto-immune reactions towards cytochrome P4502E1 in alcoholic liver disease.  Hepatology. 2003;  37 410-419
  • 83 Waterhouse P, Marengere L E, Mittrucker H W, Mak T W. CTLA-4, a negative regulator of T-lymphocyte activation.  Immunol Rev. 1996;  153 183-207
  • 84 Ueda H, Howson J, Esposito L et al.. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease.  Nature. 2003;  423 506-511
  • 85 Valenti L, De Feo T, Fracanzani A L et al.. Cytotoxic T-lymphocyte antigen-4 A49G polymorphism is associated with susceptibility to and severity of alcoholic liver disease in Italian patients.  Alcohol Alcohol. 2004;  39 276-280
  • 86 Bataller R, North K, Brenner D. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal.  Hepatology. 2003;  37 493-503
  • 87 Powell E E, Edwards-Smith C J, Hay J L et al.. Host genetic factors influence disease progression in chronic hepatitis C.  Hepatology. 2000;  31 828-832
  • 88 Osterreicher C H, Datz C, Stickel F et al.. TGFbeta1 gene polymorphism (codon 25 Arg(Pro) affects progression to cirrhosis in patients with hereditary haemochromatosis).  Cytokine. 2005;  31 142-148
  • 89 Huang H, Shiffman M L, Cheung R C et al.. Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C.  Gastroenterology. 2006;  130 1679-1687
  • 90 Bathgate A J, Pravika V, Perry C. Polymorphisms in tumour necrosis factor alpha, interleukin 10 and transforming growth factor beta 1 genes and end stage liver disease.  Eur J Gastroenterol Hepatol. 2000;  12 1329-1333
  • 91 Oliver J, Agundez J A, Morales S et al.. Polymorphisms in the transforming growth factor beta gene and the risk of advanced alcoholic liver disease.  Liver Int. 2005;  25 935-939
  • 92 Dixon J B, Bhathal P S, Jonsson J R et al.. Pro-fibrotic polymorphisms predictive of advanced liver fibrosis in the severely obese.  J Hepatol. 2003;  39 967-970
  • 93 Sutton A, Nahon P, Pessayre D et al.. Genetic polymorphisms in antioxidant enzymes modulate hepatic iron accumulation and hepatocellular carcinoma development in patients with alcohol induced cirrhosis.  Cancer Res. 2006;  66 2844-2852
  • 94 Saffroy R, Pham P, Chiappini F et al.. The MTHFR 677C> T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis.  Carcinogenesis. 2004;  25 1443-1448
  • 95 Hillebrandt S, Wasmuth H E, Weiskirchen R et al.. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans.  Nat Genet. 2005;  37 835-843
  • 96 Brown S D, Hardisty R E. Mutagenesis strategies for identifying novel loci associated with disease phenotypes.  Semin Cell Dev Biol. 2003;  14 19-24

Professor Christopher Paul DayM.D. F.R.C.P. Ph.D. 

School of Clinical Medical Sciences, Floor 4 William Leech Building, The Medical School

Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom