Synlett 2006(19): 3349-3351  
DOI: 10.1055/s-2006-956450
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Novel Three-Component Reaction of Anilines, Formaldehyde and β-Dike­tones: Simple Synthesis of 3-Spirosubstituted 1,2,3,4-Tetrahydroquinolines

Aliaksei P. Kadutskii*, Nikolas G. Kozlov
Laboratory of Organic Catalysis, Institute of Physical Organic Chemistry, The National Academy of Sciences of Belarus, 13 Surganov st., Minsk 220072, Belarus
Fax: +375(17)2841679; e-Mail: kadutskii@gmail.com;
Further Information

Publication History

Received 31 August 2006
Publication Date:
23 November 2006 (online)

Abstract

A new three-component reaction of cyclic β-diketones, formaldehyde and substituted anilines is described. The reaction provides a simple synthetic method for the one-pot preparation of 3-spirosubstituted 1,2,3,4-tetrahydroquinolines containing different substituents at the N-atom. This reaction also gives the opportunity to unite in one molecule the 1,2,3,4-tetrahydroquinoline, cyclic β-dicarbonyl, 2-azaspiro and some other (e.g., benzylic, bicyclic, adamantyl) fragments.

    References and Notes

  • 1a Perry NB. Blunt JW. Munro MHG. Sakai R. J. Org. Chem.  1988,  53:  4127 
  • 1b Konishi M. Zercher CK. Bechkam S. Haubold E.-M. J. Am. Chem. Soc.  1990,  112:  3715 
  • 1c Wender PA. Zercher CK. Bechkam S. Haubold E.-M. J. Org. Chem.  1993,  58:  5867 
  • 1d Uchida M. Chihiro M. Morita S. Kanbe T. Yamashita H. Yamasakai K. Yabuuchi Y. Nakagawa K. Chem. Pharm. Bull.  1989,  37:  2109 
  • 1e Carling RW. Leeson PD. Mosely AM. Smith JD. Saywell K. Tricklebank MD. Kemp JA. Marshal GR. Foster AC. Grimwood S. Bioorg. Med. Chem. Lett.  1993,  3:  65 
  • 1f Kam T.-S. Subramaniam G. Tetrahedron Lett.  2004,  45:  3521 
  • 2a Weinreb SM. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.401 
  • 2b Bunce RA. Herron DM. Johnson LB. Kotturi S. J. Org. Chem.  2001,  66:  2822 
  • 2c Jia X. Lin H. Huo C. Zhang W. Lu J. Yang L. Zhao G. Liu Z.-L. Synlett  2003,  1707 
  • 2d Nagarajan R. Magesh CJ. Perumal PT. Synthesis  2004,  69 
  • 2e Yadav JS. Reddy BVS. Padmavani B. Synthesis  2004,  405 
  • 2f Ding K. Flippen-Anderson J. Deschamps JR. Wang S. Tetrahedron Lett.  2004,  45:  1027 
  • 2g Fadel F. Titouani SL. Soufiaoui M. Ajamay H. Mazzah A. Tetrahedron Lett.  2004,  45:  5905 
  • 2h Ori M. Toda N. Takami K. Tago K. Kogen H. Tetrahedron  2005,  61:  2075 
  • 2i Zhang W. Guo Y. Liu Z. Jin X. Yang L. Liu Z.-L. Tetrahedron  2005,  61:  1325 
  • 3a Katritzky AR. Rachwal S. Rachwal B. Tetrahedron  1996,  52:  15031 
  • 3b Baraznenok IL. Nenajdenko VG. Churakov AV. Nesterenko PN. Balenkova ES. Synlett  2000,  514 
  • 3c De D. Seth M. Bhadori AP. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1990,  29:  70 
  • 3d Lombardo LJ. Camuso A. Clark J. Fager K. Gullo-Brown J. Hunt JT. Inigo I. Kan D. Koplowitz B. Lee F. McGlinchey K. Qian L. Ricca C. Rovnyak G. Traeger S. Tokarski J. Williams DK. Wu LI. Zhao Y. Manne V. Bhide RS. Bioorg. Med. Chem. Lett.  2005,  15:  1895 
  • 3e Santangelo F. Casagrande C. Miragoli G. Vecchietti V. Eur. J. Med. Chem.  1994,  29:  877 
  • 3f Lewis RJ. Francis ChA. Lehr RE. Blank CL.-R. Tetrahedron  2000,  56:  5345 
  • 5a Abdel-Magid AF. Carson KG. Harris BD. Maryanoff CA. Shah RD. J. Org. Chem.  1996,  61:  3849 
  • 5b Abdel-Magid AF. Maryanoff CA. Carson KG. Tetrahedron Lett.  1990,  31:  5595 
  • 5c Salvatore RN. Yoon ChH. Jung KW. Tetrahedron  2001,  57:  7785 
  • For the original work, see:
  • 8a Hofmann AW. Martius CA. Ber. Dtsch. Chem. Ges.  1871,  4:  742 
  • 8b For mechanistic considerations, see: Drumm PJ. O’Connor WF. Reilly J. J. Am. Chem. Soc.  1940,  62:  1241 
  • For synthetic applications of the rearrangement, see:
  • 8c Martínez R. Cortés E. Toscano RA. Linzaga I. J. Heterocycl. Chem.  1990,  27:  363 
  • 8d Martínez R. Cortés E. Toscano RA. Alfaro LJ. J. Heterocycl. Chem.  1990,  27:  1273 
  • 8e Martínez R. Cortés E. Toscano RA. Alfaro LJ. Avila JG. J. Heterocycl. Chem.  1991,  28:  589 
  • 9 For chemistry of 2-azaspiro compounds, see: Alonso ER. Tehrani KA. Boelens M. De Kimpe N. Synthesis  2005,  1726 ; and literature cited therein
4

General Procedure for Preparation of 1′,4′-dihydro-2 H ,2′ H ,6 H -spiro[cyclohexane-1,3′-quinoline]-2,6-diones (4a-i).
A solution of amine 1 (2 mmol) and paraformaldehyde (8 mmol) in EtOH (25 mL) was prepared by gentle warming (2-3 min). Diketone 3 (2 mmol) was added to this solution in one portion and the mixture was heated under reflux for 5 min. After cooling to r.t. the colourless precipitate was filtered off, washed with EtOH (2 × 5 mL) and dried to give 4. The yields reported in Table [1] are unoptimised and additional crops of 4 could be obtained upon concentration of the mother liquors.

6

The N-monosubstituted anilines were prepared by reductive amination of the desired ketones with the corresponding primary anilines. Sodium triacetoxyborohydride was used as a reducing agent in the reaction as reported in ref. 5a.

7

All new compounds gave satisfactory 500 MHz 1H NMR and 100 MHz 13C NMR and IR spectral data.
Selected Physical Data.
1′-(1,3-Benzodioxol-5-ylmethyl)-6′-methoxy-1′,4′-dihydro-2 H ,2′ H ,6 H -spiro[cyclohexane-1,3′-quinoline]-2,6-dione ( 4b).
Mp 148 °C. IR (KBr): 3439, 3404, 2931, 2904, 2830, 1726, 1701, 1504, 1489, 1444, 1242, 1151, 1036 cm-1. 1H NMR (CDCl3): δ = 1.82 (m, 1 H), 2.02 (m, 1 H), 2.60-2.75 (m, 4 H), 3.21 (s, 2 H), 3.46 (s, 2 H), 3.75 (s, 3 H), 4.30 (s, 2 H), 5.95 (s, 2 H), 6.55-6.63 (m, 2 H), 6.71-6.80 (m, 4 H). 13C NMR (CDCl3): δ = 19.05, 30.64, 37.86, 55.21, 56.25, 56.33, 67.07, 101.69, 108.37, 109.03, 113.10, 113.72, 115.39, 120.92, 123.33, 132.85, 139.13, 147.41, 148.70, 152.88, 206.33. MS (70 eV): m/z (%) = 135 (82), 252 (100), 393 (23) [M+], 394 (5) [M + H+]. Anal. Calcd for C23H23NO5: C, 70.21; H, 5.89; N, 3.56. Found: C, 70.21; H, 5.90; N, 3.57.
1′-(3,4-Dimethoxybenzyl)-6′-methoxy-4,4-dimethyl-1′,4′-dihydro-2 H ,2′ H ,6 H -spiro[cyclohexane-1,3′-quinoline]-2,6-dione ( 4g). Mp 159 °C. IR (KBr): 2963, 2916, 2834, 1722, 1691, 1511, 1459, 1259, 1229, 1201, 1160, 1137, 1053, 1026 cm-1. 1H NMR (CDCl3): δ = 0.88 (s, 3 H), 1.05 (s, 3 H), 2.43 (d, J = 14.0 Hz, 2 H), 2.63 (d, J = 14.0 Hz, 2 H), 3.20 (s, 2 H), 3.41 (s, 2 H), 3.75 (s, 3 H), 3.85 (s, 3 H), 3.89 (s, 3 H), 4.31 (s, 2 H), 6.55-6.63 (m, 2 H), 6.76-6.86 (m, 4 H). 13C NMR (CDCl3): δ = 27.77, 29.99, 30.62, 31.51, 51.65, 55.51, 55.90, 56.24, 56.57, 56.65, 65.89, 66.51, 110.96, 111.83, 112.95, 113.64, 115.37, 119.98, 123.65, 131.53, 139.32, 148.83, 150.04, 152.93, 206.16. MS (70 eV): m/z (%) = 151 (100), 252 (63), 437 (12) [M+], 438 (3) [M + H+]. Anal. Calcd for C26H31NO5: C, 71.37; H, 7.14; N, 3.20. Found: C, 71.37; H, 7.14; N, 3.21.
1′-Cyclododecyl-6′-methoxy-1′,4′-dihydro-2 H ,2′ H ,6 H -spiro[cyclohexane-1,3′-quinoline]-2,6-dione ( 4i). Mp 186 °C. IR (KBr): 3431, 2937, 2925, 2859, 1717, 1692, 1611, 1580, 1505, 1256, 1239, 1052 cm-1. 1H NMR (CDCl3): δ = 1.30-1.50 (m, 20 H), 1.59-1.70 (m, 2 H), 1.74-1.88 (m, 1 H), 2.06-2.18 (m, 1 H), 2.62-2.67 (m, 2 H), 2.81-2.87 (m, 2 H), 3.15 (s, 2 H), 3.35 (s, 2 H), 3.74 (s, 3 H), 3.88 (t, J = 5.8 Hz, 1 H), 6.68 (br s, 2 H), 6.37 (s, 1 H). 13C NMR (CDCl3): δ = 18.31, 22.47, 22.60, 23.01, 23.77, 23.97, 26.42, 29.65, 37.22, 48.07, 50.91, 55.42, 65.98, 111.58, 112.12, 115.02, 123.10, 138.75, 151.28, 205.74. Anal. Calcd for C27H39NO3: C, 76.20; H, 9.24; N, 3.29. Found: C, 76.21; H, 9.22; N, 3.28.


1′-(5,5,6-Trimethylbicyclo[2.2.1]hept-2-yl)-6′-methyl-1′,4′-dihydro-2 H ,2′ H ,6 H -spiro[cyclohexane-1,3′-quinoline]-2,6-dione ( 4j). Mp 156 °C. IR (KBr): 3407, 2964, 2893, 2865, 2833, 1728, 1702, 1619, 1505, 1416, 1265, 1170, 1019, 819, 812 cm-1. 1H NMR (CDCl3): δ = 0.87 (s, 3 H), 0.91 (s, 3 H), 1.03 (d, J = 7.5 Hz, 3 H), 1.31 (dd, J = 1.1, 10.3 Hz, 1 H), 1.49 (dt, J = 3.6, 13.0 Hz, 1 H), 1.70 (d, J = 3.7 Hz, 1 H), 1.75-1.95 (m, 3 H), 2.00 (dq, J = 1.1, 7.4 Hz, 1 H), 2.05-2.13 (m, 1 H), 2.16 (d, J = 2.0 Hz, 1 H), 2.26 (s, 3 H), 2.51 (dt, J = 5.3, 15.5 Hz, 1 H), 2.72 (dt, J = 5.3, 15.5 Hz, 1 H), 2.81-2.97 (m, 2 H), 2.88 (d, J = 11.0 Hz, 1 H), 2.91 (d, J = 13.0 Hz, 1 H), 3.16 (d, J = 13.0 Hz, 1 H), 3.36 (dt, J = 3.9, 9.7 Hz, 1 H), 3.71 (d, J = 11.0 Hz, 1 H), 6.61 (d, J = 8.0 Hz, 1 H), 6.85 (s, 1 H), 6.97 (d, J = 8.0 Hz, 1 H). 13C NMR (CDCl3): δ = 15.81, 17.96, 20.50, 24.72, 26.31, 32.46, 34.84, 35.80, 37.03, 37.40, 37.88, 39.67, 48.17, 49.38, 49.93, 60.55, 71.76, 114.87, 125.63, 127.47, 127.86, 128.07, 146.13, 205.77, 206.23. Anal. Calcd for C25H33NO2: C, 79.11; H, 8.76; N, 3.69. Found: C, 79.10; H, 8.74; N, 3.70.
1′-(2-Adamantyl)-6′-methyl-4,4-dimethyl-1′,4′-dihydro-2 H ,2′ H ,6 H -spiro[cyclohexane-1,3′-quinoline]-2,6-dione ( 4k).
Mp 205 °C. IR (KBr): 3440, 2919, 2900, 2862, 1725, 1695, 1502, 1248, 1155, 819, 519 cm-1. 1H NMR (CDCl3): δ = 0.94 (s, 3 H), 1.07 (s, 3 H), 1.56 (d, J = 12.5 Hz, 2 H), 1.75 (s, 2 H), 1.83-1.96 (m, 6 H), 2.06 (d, J = 12.5 Hz, 2 H), 2.24 (s, 3 H), 2.28 (br s, 2 H), 2.56 (d, J = 14.0 Hz, 2 H), 2.80 (d, J = 14.0 Hz, 2 H), 3.05 (s, 2 H), 3.51 (s, 3 H), 6.56 (d, J = 8.0 Hz, 1 H), 6.88 (s, 1 H), 6.93 (d, J = 8 Hz, 1 H). 13C NMR (CDCl3): δ = 20.45, 27.02, 27.51, 28.02, 29.00, 29.77, 30.65, 32.26, 34.37, 37.57, 37.59, 46.18, 51.21, 60.98, 69.57, 114.64, 125.76, 127.58, 127.84, 128.30, 144.59, 206.01. Anal. Calcd for C27H35NO2: C, 79.96; H, 8.70; N, 3.45. Found: C, 80.00; H, 8.73; N, 3.42.