Horm Metab Res 2006; 38(12): 799-802
DOI: 10.1055/s-2006-956181
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Prolonged Effect of Stress at Weaning on the Brain Serotonin Metabolism and Sexuality of Female Rats

K. Tekes 1 , M. Hantos 2 , M. Gyenge 1 , Cs. Karabélyos 4 , G. Csaba 3
  • 1Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
  • 2University Pharmacy and Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
  • 3Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
  • 4Biotest Hungaria Ltd, Budapest, Hungary
Further Information

Publication History

Received 27 March 2006

Accepted after second revision 13 September 2006

Publication Date:
12 December 2006 (online)

Abstract

Weanling female rats were stressed (by water and food deprivation for two days) and three months later the following indexes were studied: 5-HT and 5-HIAA levels in five brain regions, blood plasma and cerebrospinal fluid (CSF), sexual activity and nocistatin level of the plasma and CSF. The 5-HIAA content of hypothalamus and brainstem was significantly decreased (in the brainstem with one third) and in the striatum significantly increased. Plasma nocistatin level was significantly increased. Meyerson index and lordosis quotient were similar to control, but the estrus frequency almost doubled in the stressed animals. Much more defense reactions were observed in the stressed females during trials of mating. The results demonstrate that, 1) the perinatal period is not only sensitive to the remote-effects of stress but later could also be stress-sensitive critical periods, and 2) the continuously differentiating (e.g. bone marrow) cells are sensitive to late imprinting by stress, as well as to the brain and the sexual system.

References

  • 1 Csaba G. Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting.  Biol Rev. 1980;  55 47-63
  • 2 Csaba G. The present state in the phylogeny and ontogeny of hormone receptors.  Horm Metab Res. 1984;  16 329-335
  • 3 Csaba G. Phylogerny and ontogeny of chemical signaling: origin and development of hormone receptors.  Internat Rev Cytol. 1994;  155 1-48
  • 4 Csaba G. Hormonal imprinting: its role during the evolution and development of hormones and receptors.  Cell Biol Int. 2000;  27 423-427
  • 5 Bern HA, Gorski RA, Kawashima S. Long term effects of prenatal hormone administration.  Science. 1973;  181 189-190
  • 6 Tchernitchin A, Tchernitchin N. Imprinting of paths of heterodifferentiation by prenatal or neonatal exposure to hormones, pharmaceuticals, pollutants and other agents and conditions.  Med Sci Res. 1992;  20 391-397
  • 7 Nelson KG, Sakay Y, Eitzman B, Steel T, McLachlan JA. Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes.  Cell Growth Diff. 1994;  5 115-119
  • 8 Csaba G, Pállinger E. Prolonged impact of pubertal serotonin treatment (hormonal imprinting) on the later serotonin content of white blood cells.  Life Sci. 2002;  71 879-885
  • 9 Csaba G, Kovács P, Pállinger É. Prolonged effect of a single serotonin treatment in adult age on the serotonin and histamine content of the white blood cells and mast cells of rat.  Cell Biochem Funct. 2003;  21 1-4
  • 10 Csaba G, Knippel B, Karabélyos Cs, Inczefi-Gonda Á, Hantos M, Tekes K. Effect of neonatal β-endorphin imprinting on sexual behavior and brain serotonin level in adult rats.  Life Sci. 2003;  73 103-114
  • 11 Tekes K, Hantos M, Csaba G. Single neonatl treatment with β-endorphin (hormonal imprinting) extremely enhances nocistatin level of cerebrospinal fluid in adult rats.  Life Sci. 2004;  74 1993-1997
  • 12 Csaba G, Knippel B, Karabélyos Cs, Inczefi-Gonda Á, Hantos M, Tekes K. Endorphin excess at weaning durably influences sexual activity, uterine estrogen receptor's binding capacity and brain serotonin level of female rats.  Horm Metab Res. 2004;  36 39-43
  • 13 Anand KJ. Effects of perinatal pain and stress.  Progr Brain Res. 2000;  122 117-129
  • 14 Insel TR, Kinsley CH, Mann PE, Bridges RS. Prenatal stress has long term effects on brain opiate receptors.  Brain Res. 1990;  511 93-97
  • 15 Sternberg WF, Ridgway CG. Effects of gestational stress and neonatal handling on pain, analgesia and stress behavior in adult mice.  Physiol Behav. 2003;  78 375-383
  • 16 Csaba G, Kovács P, Tóthfalusi L, Pállinger É. Prolonged effect of stress (water and food deprivation) at weaning or in adult age on the triiodothyronine and histamine content of immune cells.  Horm Metab Res. 2005;  37 711-715
  • 17 Madlafousek J, Hlinak Z. Sexual behavior of the female laboratory rat: inventory, patterning and measurement.  Behavior. 1977;  63 129-174
  • 18 DeVries M, Odink J. Simultaneous measurement of serotonin and 5-hydroxyindoleacetic acid in rat brain using a liquid chromatographic method with elecrochemical detection.  J Chromatography. 1991;  8 250-257
  • 19 Ferrari PF, Palanza P, Parmigiani S, de Almeida RMM, Miczek KA. Serotonin and aggressive behavior in rodents and nonhuman primates: predispositions and plasticity.  Eur J Pharmacol. 2005;  526 259-273
  • 20 Hassanain M, Bhatt S, Siegel A. Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5HT2 receptors.  Brain Res. 2003;  981 201-209
  • 21 Hassanain M, Bhatt S, Zalcman S, Siegel A. Potentiating role of interleukin-1 beta (IL-1 beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat.  Brain Res. 2005;  1048 1-11
  • 22 Birger M, Swartz M, Cohen D, Alesh Y, Grishpan C, Kotelr M. Aggression: the testosterone-serotonin link.  Isr Med Assoc J. 2003;  5 653-658
  • 23 Pucilowski O, Kostowski W. Aggressive behaviour and the central serotonergic system.  Behav Brain Res. 1983;  9 33-48
  • 24 Vitale ML, Chiocchio SR. Serotonin, a neurotransmitter involved in the regulation of luteinizing hormone release.  Endocr Rev. 1993;  14 480-493
  • 25 Domanski E, Przekop F, Chomicka L, Ostrowska A. Effect of stress on the course of oestrus cycle and the release of luteinizing hormone; the role of endorphin in these processes.  Acta Physiol Pol. 1989;  40 64-73
  • 26 Argiolas A, Melis MR. The neurophysiology of the sexual cycle.  J Endocrinol Invest. 2003;  26 ((Suppl)) 20-22
  • 27 Paus R, Theoharides C, Arck PC. Neuroimmunoendocrine circuitry of the brain-skin connection.  Trends Immunol. 2006;  27 32-39
  • 28 Csaba G. Interactions between the genetic programme and environmental influences in the perinatal critical periods.  Zool Sci. 1991;  8 813-825
  • 29 Tchernitchin AN, Tchernitchin NN, Mena MA, Unda C, Soto J. Imprinting: perinatal exposures cause the development of diseases during the adult age.  Acta Biol Hung. 1999;  50 425-440
  • 30 Thadani PV. The intersection of stress, drug abuse and development.  Psychoneuroendocrinology. 2002;  27 221-230
  • 31 Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O. Prenatal stress and long-term consequences implications of glucocorticoid hormones.  Neurosci Biobehav Rev. 2003;  27 119-127
  • 32 Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods.  Exp Neurol. 2004;  190 ((Suppl 1)) S8-S21
  • 33 Endroczi E. Recent development in hormone research.  Acta Physiol Hung. 1989;  73 417-432
  • 34 Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and adrenal axes.  J Neuroendocrinol. 2002;  14 506-513

Correspondence

György CsabaM.D., Ph.D., D.Sc. 

Professor Emeritus·Department of Genetics

Cell and Immunobiology

Semmelweis University

1445, POB 370

Budapest

Hungary

Phone: +36/1/210 29 50

Fax: +36/1/210 29 50

Email: csagyor@dgci.sote.hu