Der Nuklearmediziner 2004; 27(4): 246-254
DOI: 10.1055/s-2004-832458
© Georg Thieme Verlag Stuttgart · New York

PET (und PET/CT) - Stellenwert in der Diagnostik von primären Hirntumoren

Diagnostic Value of PET (and PET/CT) in Primary Brain TumorsG. Pöpperl1
  • 1Klinik und Poliklinik für Nuklearmedizin, Klinikum der Universität München-Grosshadern
Further Information

Publication History

Publication Date:
14 February 2005 (online)

Zusammenfassung

Die Beurteilung von Hirntumoren bei Erstdiagnosestellung hinsichtlich Grading, exakter Ausdehnung und Abgrenzung zum umliegenden Hirngewebe stellt ebenso wie die Rezidivdiagnostik nach verschiedenen Therapieformen eine Herausforderung an die unterschiedlichen bildgebenden Verfahren dar. Während morphologisch orientierte Verfahren (MRT, CT) aufgrund reaktiver perifokaler Veränderungen, unspezifischer oder bei niedriggradigen Tumoren sogar fehlender Kontrastmittelaufnahme häufig limitiert sind, gewinnt die Positronen-Emissions-Tomographie (PET) als funktionelles bildgebendes Verfahren in der Hirntumordiagnostik zunehmend an Bedeutung. Aktuell wird die PET unter Verwendung von [18F]FDG und 18F- bzw. 11C-markierten Aminosäuretracern zur Therapieplanung (vor stereotaktischer Biopsie, Operation und Strahlentherapie), in der Rezidivdiagnostik und zum Therapiemonitoring nach unterschiedlichen systemischen und lokalen Therapieformen eingesetzt. Diese Arbeit fasst eigene Erfahrungen und die wichtigsten in der Literatur publizierten Daten zur PET-Diagnostik bei Hirntumoren zusammen.

Abstract

Assessment of newly diagnosed brain tumors regarding grading, exact delination and demarcation of tumor to surrounding brain tissue as well as diagnosis of recurrency after various forms of treatment is a diagnostic challenge for different imaging modalities. Whereas morphological methods (MRI, CT) are often hampered by reactive perifocal changes, unspecific or in low grade tumors even lacking contrast enhancement, positron emission tomography (PET) as functional imaging method has gained clinical importance in the diagnosis of brain tumors. Currently, PET using [18F]FDG and 18F- or 11C-labelled amino acid tracers is applied for therapy planning (before stereotactic biopsy, surgery and radiation therapy), diagnosis of recurrency and for monitoring the therapeutic effect after various systemic or locoregional therapeutic approaches. This paper offers a comprehensive summary of own experiences and PET results reported in the literature dealing with this topic.

Literatur

  • 1 Alavi J B, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M. Positron emission tomography in patients with glioma. A predictor of prognosis.  Cancer. 1988;  62 1074-1078
  • 2 Becherer A, Karanikas G, Szabo M, Zettinig G, Asenbaum S, Marosi C, Henk C, Wunderbaldinger P, Czech T, Wadsak W, Kletter K. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine.  Eur J Nucl Med Mol Imaging. 2003;  30 1561-1567
  • 3 Boado R J, Black K L, Pardridge W M. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors.  Brain Res Mol Brain Res. 1994;  27 51-57
  • 4 Braun V, Dempf S, Weller R, Reske S N, Schachenmayr W, Richter H P. Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data - results of a pilot study in 32 surgical cases.  Acta Neurochir (Wien). 2002;  144 777-782
  • 5 De Witte O, Hildebrand J, Luxen A, Goldman S. Acute effect of carmustine on glucose metabolism in brain and glioblastoma.  Cancer. 1994;  74 2836-2842
  • 6 De Witte O, Lefranc F, Levivier M, Salmon I, Brotchi J, Goldman S. FDG-PET as a prognostic factor in high-grade astrocytoma.  J Neurooncol. 2000;  49 157-163
  • 7 De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, Salmon I, Brotchi J, Goldman S. Positron emission tomography with injection of methionine as a prognostic factor in glioma.  J Neurosurg. 2001;  95 746-750
  • 8 Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool.  Invest Radiol. 1987;  22 360-371
  • 9 Di Chiro G, Oldfield E, Wright D C, De Michele D, Katz D A, Patronas N J, Doppman J L, Larson S M, Ito M, Kufta C V. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies.  AJR Am J Roentgenol. 1988;  150 189-197
  • 10 Eary J F, Mankoff D A, Spence A M, Berger M S, Olshen A, Link J M, O'Sullivan F, Krohn K A. 2-[C-11]thymidine imaging of malignant brain tumors.  Cancer Res. 1999;  59 615-621
  • 11 Ericson K, von Holst H, Mosskin M, Bergstrom M, Lindqvist M, Noren G, Eriksson L. Positron emission tomography of cavernous haemangiomas of the brain.  Acta Radiol Diagn (Stockh). 1986;  27 379-383
  • 12 Fischman A J, Thornton A F, Frosch M P, Swearinger B, Gonzalez R G, Alpert N M. FDG hypermetabolism associated with inflammatory necrotic changes following radiation of meningioma.  J Nucl Med. 1997;  38 1027-1029
  • 13 Goldman S, Levivier M, Pirotte B, Brucher J M, Wikler D, Damhaut P, Dethy S, Brotchi J, Hildebrand J. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy.  J Nucl Med. 1997;  38 1459-1462
  • 14 Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus R I, Mendoza G, Weber-Luxenburger G, Lottgen J, Thiel A, Wienhard K, Heiss W D. 11C-methionine PET for differential diagnosis of low-grade gliomas.  Neurology. 1998;  50 1316-1322
  • 15 Herholz K, Kracht L W, Heiss W D. Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET.  J Neuroimaging. 2003;  13 269-271
  • 16 Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, Luxen A, Reznik M. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine.  J Nucl Med. 1998;  39 778-785
  • 17 Kelly P J, Daumas-Duport C, Kispert D B, Kall B A, Scheithauer B W, Illig J J. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms.  J Neurosurg. 1987;  66 865-874
  • 18 Kessler M L, Pitluck S, Petti P, Castro J R. Integration of multimodality imaging data for radiotherapy treatment planning.  Int J Radiat Oncol Biol Phys. 1991;  21 1653-1667
  • 19 Kim S, Chung J K, Im S H, Jeong J M, Lee D S, Kim D G, Jung H W, Lee M C. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with [18]F-FDG PET. Eur J Nucl Med Mol Imaging 2004; [Epub ahead of print] DOI: 10.1007/s00259-004-1598-6
  • 20 Kubota K, Kubota R, Yamada S, Tada M. Effects of radiotherapy on the cellular uptake of carbon-14 labeled L-methionine in tumor tissue.  Nucl Med Biol. 1995;  22 193-198
  • 21 Kumar A J, Leeds N E, Fuller G N, Van Tassel P, Maor M H, Sawaya R E, Levin V A. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment.  Radiology. 2000;  217 377-384
  • 22 Marriott C J, Thorstad W, Akabani G, Brown M T, McLendon R E, Hanson M W, Coleman R E. Locally increased uptake of fluorine-18-fluorodeoxyglucose after intracavitary administration of iodine-131-labeled antibody for primary brain tumors.  J Nucl Med. 1998;  39 1376-1380
  • 23 Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, Shimosegawa E, Ito H, Hatazawa J, Okudera T. et al . Cerebral glioma: evaluation with methionine PET.  Radiology. 1993;  186 45-53
  • 24 Padma M V, Said S, Jacobs M, Hwang D R, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G, Mantil J C. Prediction of pathology and survival by FDG PET in gliomas.  J Neurooncol. 2003;  64 227-237
  • 25 Pardo F S, Aronen H J, Fitzek M, Kennedy D N, Efird J, Rosen B R, Fischman A J. Correlation of FDG-PET interpretation with survival in a cohort of glioma patients.  Anticancer Res. 2004;  24 2359-2365
  • 26 Patronas N J, Di Chiro G, Brooks R A, DeLaPaz R L, Kornblith P L, Smith B H, Rizzoli H V, Kessler R M, Manning R G, Channing M, Wolf A P, O'Connor C M. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain.  Radiology. 1982;  144 885-889
  • 27 Pirotte B, Goldman S, David P, Wikler D, Damhaut P, Vandesteene A, Salmon L, Brotchi J, Levivier M. Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine.  Acta Neurochir Suppl (Wien). 1997;  68 133-138
  • 28 Pirotte B, Goldman S, Salzberg S, Wikler D, David P, Vandesteene A, Van Bogaert P, Salmon I, Brotchi J, Levivier M. Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases.  Pediatr Neurosurg. 2003;  38 146-155
  • 29 Popperl G, Gotz C, Rachinger W, Gildehaus F J, Holtmannspoetter M, Tonn J C, Tatsch K. [18F]FET PET for monitoring the effects of intralesional radioimmunotherapy in patients with malignant glioma.  Eur J Nucl Med Mol Imaging. 2003;  30 S189-S190
  • 30 Popperl G, Goldbrunner R, Gildehaus F J, Tanner P, Tonn J C, Tatsch K. [18F]FET PET for monitoring the effects of convection enhanced delivery of paclitaxel in patients with recurrent glioblastoma.  Eur J Nucl Med Mol Imaging. 2004;  31 S234-234
  • 31 Popperl G, Gotz C, Rachinger W, Gildehaus F J, Tonn J C, Tatsch K. Value of O-(2-[(18)F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma.  Eur J Nucl Med Mol Imaging. 2004;  31 1464-1470
  • 32 Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, Bolander H, Bergstrom M, Smits A. Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas.  Cancer. 2001;  92 1541-1549
  • 33 Ricci P E, Karis J P, Heiserman J E, Fram E K, Bice A N, Drayer B P. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography?.  AJNR Am J Neuroradiol. 1998;  19 407-413
  • 34 Ross D A, Sandler H M, Balter J M, Hayman J A, Archer P G, Auer D L. Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors.  J Neurooncol. 2002;  56 175-181
  • 35 Rozental J M, Levine R L, Mehta M P, Kinsella T J, Levin A B, Algan O, Mendoza M, Hanson J M, Schrader D A, Nickles R J. Early changes in tumor metabolism after treatment: the effects of stereotactic radiotherapy.  Int J Radiat Oncol Biol Phys. 1991;  20 1053-1060
  • 36 Sato N, Suzuki M, Kuwata N, Kuroda K, Wada T, Beppu T, Sera K, Sasaki T, Ogawa A. Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining.  Neurosurg Rev. 1999;  22 210-214
  • 37 Souba W W, Pacitti A J. How amino acids get into cells: mechanisms, models, menus, and mediators.  JPEN J Parenter Enteral Nutr. 1992;  16 569-578
  • 38 Tang G, Wang M, Tang X, Luo L, Gan M. Synthesis and evaluation of O-(3-[18F]fluoropropyl)-L-tyrosine as an oncologic PET tracer.  Nucl Med Biol. 2003;  30 733-739
  • 39 Vaalburg W, Coenen H H, Crouzel C, Elsinga P H, Langstrom B, Lemaire C, Meyer G J. Amino acids for the measurement of protein synthesis in vivo by PET.  Int J Rad Appl Instrum B. 1992;  19 227-237
  • 40 Valk P E, Mathis C A, Prados M D, Gilbert J C, Budinger T F. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole.  J Nucl Med. 1992;  33 2133-2137
  • 41 Van Laere K, Ceyssens S, Van Calenbergh F, De Groot T, Menten J, Flamen P, Bormans G, Mortelmans L. Direct comparison of (18)F-FDG and (11)C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2004; [Epub ahead of print] DOI: 10.1007/s00259-004-1564-3
  • 42 van Waarde A, Cobben D C, Suurmeijer A J, Maas B, Vaalburg W, de Vries E F, Jager P L, Hoekstra H J, Elsinga P H. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model.  J Nucl Med. 2004;  45 695-700
  • 43 Voges J, Herholz K, Holzer T, Wurker M, Bauer B, Pietrzyk U, Treuer H, Schroder R, Sturm V, Heiss W D. 11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds.  Stereotact Funct Neurosurg. 1997;  69 129-135
  • 44 Wurker M, Herholz K, Voges J, Pietrzyk U, Treuer H, Bauer B, Sturm V, Heiss W D. Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy.  Eur J Nucl Med. 1996;  23 583-586

Dr. med. G. Pöpperl

Klinik und Poliklinik für Nuklearmedizin · Klinikum der Universität München-Grosshadern

Marchioninistr. 15

81377 München

Phone: +49/89/70 95/46 46

Fax: +49/89/70 95/76 46

Email: Gabriele.Poepperl@med.uni-muenchen.de