Horm Metab Res 2004; 36(11/12): 837-841
DOI: 10.1055/s-2004-826172
Review
© Georg Thieme Verlag KG Stuttgart · New York

Effects of Glucagon-like Peptide 1 on the Hepatic Glucose Metabolism

D.  D'Alessio1 , T.  Vahl1 , R.  Prigeon2
  • 1Division of Endocrinology, University of Cincinnati
  • 2Division of Geriatrics, University of Maryland
Further Information

Publication History

Received 10 August 2004

Accepted after revision 25 August 2004

Publication Date:
18 January 2005 (online)

Abstract

Glucagon-like peptide 1 has important actions in lowering blood glucose, both through its incretin action and by regulating other systems affecting glucose metabolism. There is good evidence that the coordinate regulation of islet hormones by GLP-1 has significant effects on hepatic glucose metabolism, and this likely contributes to the potent effect of GLP-1 on fasting hyperglycemia in diabetic patients. More controversial are potential effects of GLP-1 on hepatic glucose production or storage independent of insulin and glucagon. There are data from in vitro studies supporting an effect of GLP-1 to promote glycogen synthesis in hepatocytes, and several in vivo studies suggesting that GLP-1 has independent effects on hepatic glucose uptake and/or production. However, these findings must be considered against a backdrop of studies that have not demonstrated islet-independent actions of GLP-1. This paper will review the current literature addressing hepatic effects of GLP-1 and identify important gaps in the knowledge base for this topic.

References

  • 1 D’Alessio D A, Vahl T P. Glucagon-like peptide 1: evolution of an incretin into a treatment for diabetes.  Am J Physiol Endocrinol Metab. 2004;  286 E882-E890
  • 2 Deacon C F, Pridal L, Klarskov L, Olesen M, Holst J J. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig.  Am J Physiol. 1996;  271 E458-E464
  • 3 Dardevet D, Moore M C, Neal D, DiCostanzo C A, Snead W, Cherrington A D. Insulin-independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of hepatoportal region.  Am J Physiol Endocrinol Metab. 2004;  287 E75-E81
  • 4 Nishizawa M, Moore M C, Shiota M, Gustavson S M, Snead W L, Neal D W, Cherrington A D. Effect of intraportal glucagon-like peptide-1 on glucose metabolism in conscious dogs.  Am J Physiol Endocrinol Metab. 2003;  284 E1027-E1036
  • 5 Kieffer T J, Habener J F. The glucagon-like peptides.  Endocr Rev. 1999;  20 876-913
  • 6 Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1.  Proc Natl Acad Sci U S A. 1992;  89 8641-8645
  • 7 Moens K, Heimberg H, Flamez D, Huypens P, Quartier E, Ling Z, Pipeleers D, Gremlich S, Thorens B, Schuit F. Expression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells.  Diabetes. 1996;  45 257-261
  • 8 Heller R S, Kieffer T J, Habener J F. Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas.  Diabetes. 1997;  46 785-791
  • 9 Hvidberg A, Nielsen M T, Hilsted J, Orskov C, Holst J J. Effect of glucagon-like peptide-1(proglucagon 78 - 107 amide) on hepatic glucose production in healthy man.  Metabolism: Clinical and Experimental. 1994;  43 104-108
  • 10 Van Dijk G, Lindskog S, Holst J J, Steffens A B, Ahren B. Effects of glucagon-like peptide-I on glucose turnover in rats.  Am J Physiol. 1996;  270 E1015-E1021
  • 11 Campos R V, Lee Y C, Drucker D J. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse.  Endocrinology. 1994;  134 2156-2164
  • 12 Yamato E, Ikegami H, Takekawa K, Fujisawa T, Nakagawa Y, Hamada Y, Ueda H, Ogihara T. Tissue-specific and glucose-dependent expression of receptor genes for glucagon and glucagon-like peptide-1 (GLP-1).  Horm Metab Res. 1997;  29 56-59
  • 13 Villanueva-Penacarrillo M L, Delgado E, Trapote M A, Alcantara A, Clemente F, Luque M A, Perea A, Valverde I. Glucagon-like peptide-1 binding to rat hepatic membranes.  J Endocrinol. 1995;  146 183-189
  • 14 Wheeler M B, Lu M, Dillon J S, Leng X-H, Chen C, Boyd A E. Functional expression of the rat glucagon-like peptide-1 receptor, evidence for coupling to both adenyl cyclase and phospholipase-C.  Endocrinology. 1993;  133 57-62
  • 15 Bullock B P, Heller R S, Habener J F. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor.  Endocrinology. 1996;  137 2968-2978
  • 16 Dunphy J L, Taylor R G, Fuller P J. Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression.  Mol Cell Endocrinol. 1998;  141 179-186
  • 17 Sandhu H, Wiesenthal S R, MacDonald P E, McCall R H, Tchipashvili V, Rashid S, Satkunarajah M, Irwin D M, Shi Z Q, Brubaker P L, Wheeler M B, Vranic M, Efendic S, Giacca A. Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs.  Diabetes. 1999;  48 1045-1053
  • 18 Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide 1: brain, heart and pancreatic forms have the same deduced amino acid sequences.  FEBS Letters. 1995;  358 219-224
  • 19 Wei Y, Mojsov S. Distribution of GLP-1 and PACAP receptors in human tissues.  Acta Physiol Scand. 1996;  157 355-357
  • 20 Ikezawa Y, Yamatani K, Ohnuma H, Daimon M, Manaka H, Sasaki H. Glucagon-like peptide-1 inhibits glucagon-induced glycogenolysis in perivenous hepatocytes specifically.  Regul Pept. 2003;  111 207-210
  • 21 Valverde I, Morales M, Clemente F, Lopez-Delgado M I, Delgado E, Perea A, Villanueva-Penacarrillo M L. Glucagon-like peptide 1: a potent glycogenic hormone.  FEBS Lett. 1994;  349 313-316
  • 22 Alcantara A I, Morales M, Delgado E, Lopez-Delgado M I, Clemente F, Luque M A, Malaisse W J, Valverde I, Villanueva-Penacarrillo M L. Exendin-4 agonist and exendin(9 - 39)amide antagonist of the GLP-1(7 - 36)amide effects in liver and muscle.  Arch Biochem Biophys. 1997;  341 1-7
  • 23 Morales M, Lopez-Delgado M I, Alcantara A, Luque M A, Clemente F, Marquez L, Puente J, Vinambres C, Malaisse W J, Villanueva-Penacarrillo M L, Valverde I. Preserved GLP-I effects on glycogen synthase a activity and glucose metabolism in isolated hepatocytes and skeletal muscle from diabetic rats.  Diabetes. 1997;  46 1264-1269
  • 24 Lopez-Delgado M I, Morales M, Villanueva-Penacarrillo M L, Malaisse W J, Valverde I. Effects of glucagon-like peptide 1 on the kinetics of glycogen synthase a in hepatocytes from normal and diabetic rats.  Endocrinology. 1998;  139 2811-2817
  • 25 Marquez L, Trapote M A, Luque M A, Valverde I, Villanueva-Penacarrillo M L. Inositolphosphoglycans possibly mediate the effects of glucagon-like peptide-1(7 - 36)amide on rat liver and adipose tissue.  Cell Biochem Funct. 1998;  16 51-56
  • 26 Redondo A, Trigo M V, Acitores A, Valverde I, Villanueva-Penacarrillo M L. Cell signalling of the GLP-1 action in rat liver.  Mol Cell Endocrinol. 2003;  204 43-50
  • 27 Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells.  Diabetologia. 1999;  42 856-864
  • 28 Nakagawa Y, Kawai K, Suzuki H, Ohashi S, Yamashita K. Glucagon-like peptide-1(7 - 36) amide and glycogen synthesis in the liver.  Diabetologia. 1996;  39 1241-1242
  • 29 Freyse E J, Becher T, El-Hag O, Knospe S, Goke B, Fischer U. Blood glucose lowering and glucagonostatic effects of glucagon-like peptide I in insulin-deprived diabetic dogs.  Diabetes. 1997;  46 824-828
  • 30 Freyse E J, Knospe S, Becher T, El H ag, Goke B, Fischer U. Glucagon-like peptide-1 has no insulin-like effects in insulin-dependent diabetic dogs maintained normoglycemic and normoinsulinemic.  Metabolism. 1999;  48 134-137
  • 31 Prigeon R L, Quddusi S, Paty B, D’Alessio D A. Suppression of endogenous glucose production by glucagon-like peptide 1 independent of islet hormones: An extrapancreatic effect of an incretin hormone.  Am J Physiol Endocrinol Metab. 2003;  28 28
  • 32 Toft-Nielsen M, Madsbad S, Holst J J. The effect of glucagon-like peptide 1 (GLP-1) on glucose elimination in healthy subjects depends on the pancreatic glucoregulatory hormones.  Diabetes. 1996;  45 552-556
  • 33 Larsson H, Holst J J, Ahren B. Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans.  Acta Physiol Scand. 1997;  160 413-422
  • 34 Orskov L, Holst J J, Moller N, Alberti K GMM, Schmitz O. GLP-1 does not acutely affect insulin sensitivity in healthy man.  Diabetologia. 1996;  39 1227-1232
  • 35 Vella A, Shah P, Basu R, Basu A, Holst J J, Rizza R A. Effect of glucagon-like peptide 1(7 - 36) amide on glucose effectiveness and insulin action in people with type 2 diabetes.  Diabetes. 2000;  49 611-617
  • 36 Egan J M, Meneilly G S, Habener J F, Elahi D. Glucagon-like Peptide-1 augments insulin-mediated glucose uptake in the obese state.  J Clin Endocrinol Metab. 2002;  87 3768-3773
  • 37 Shalev A, Ninnis R, Keller U. Effects of glucagon-like peptide 1 (7 - 36 amide) on glucose kinetics during somatostatin-induced suppression of insulin secretion in healthy men.  Horm Res. 1998;  49 221-225
  • 38 Vella A, Shah P, Basu R, Basu A, Camilleri M, Schwenk W F, Rizza R A. Effect of enteral vs. parenteral glucose delivery on initial splanchnic glucose uptake in nondiabetic humans.  Am J Physiol Endocrinol Metab. 2002;  283 E259-E266
  • 39 Nakabayashi H, Nishizawa M, Nakagawa A, Takeda R, Niijima A. Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1.  American Journal of Physiology. 1996;  271 E808-E813
  • 40 Nishizawa M, Nakabayashi H, Uchida K, Nakagawa A, Niijima A. The hepatic vagal nerve is receptive to incretin hormone glucagon-like peptide-1, but not to glucose-dependent insulinotropic polypeptide, in the portal vein.  J Auton Nerv Syst. 1996;  61 149-154
  • 41 Balkan B, Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms.  Am J Physiol Regul Integr Comp Physiol. 2000;  279 R1449-R1454
  • 42 Burcelin R, da Costa A, Drucker D, Thorens B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor.  Diabetes. 2001;  50 1720-1728
  • 43 Han V KM, Hynes M A, Jin C, Towle A C, Lauder J M, Lund P K. Cellular localization of proglucagon/glucagon-like peptide 1 messenger RNAs in rat brain.  Journal of Neuroscience. 1986;  16 97-107
  • 44 Jin S L, Han V K, Simmons J G, Towle A C, Lauder J M, Lund P K. Distribution of glucagonlike peptide 1 (GLP-1), glucagon, and glicentin in the rat brain: An immunocytochemical study.  J Comp Neurol. 1988;  271 519-532
  • 45 Seeley R J, Blake K, Rushing P A, Benoit S, Eng J, Woods S C, D’Alessio D. The role of CNS glucagon-like peptide-1 (7 - 36) amide receptors in mediating the visceral illness effects of lithium chloride [In Process Citation].  J Neurosci. 2000;  20 1616-1621
  • 46 Nakagawa A, Satake H, Nakabayashi H, Nishizawa M, Furuya K, Nakano S, Kigoshi T, Nakayama K, Uchida K. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells.  Auton Neurosci. 2004;  110 36-43
  • 47 Vahl T P, Elfers E, Woods S C, Seeley R J, D’Alessio D. Signaling from GLP-1 receptors in the hepatic portal bed is required for oral glucose tolerance.  Diabetes. 2003;  52 A78
  • 48 Wettergren A, Wojdemann M, Meisner S, Stadil F, Holst J J. The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7 - 36 amide on gastric acid secretion in humans depends on an intact vagal innervation.  Gut. 1997;  40 597-601
  • 49 Imeryuz N, Yegen B C, Bozkurt A, Coskun T, Villanueva-Penacarrillo M L, Ulusoy N B. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms.  Am J Physiol. 1997;  273 G920-G927
  • 50 Prechtl J C, Powley T L. A light and electron microscopic examination of the vagal hepatic branch of the rat.  Anat Embryol (Berl). 1987;  176 115-126
  • 51 Berthoud H R, Kressel M, Neuhuber W L. An anterograde tracing study of the vagal innervation of rat liver, portal vein and biliary system.  Anat Embryol (Berl). 1992;  186 431-442
  • 52 Niijima A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig.  Journal of Physiology. 1982;  332 315-323
  • 53 Nakabayashi H, Niijima A, Kurata Y, Usukura N, Takeda R. Somatostatin-sensitive neural system in the liver.  Neuroscience Letters. 1986;  67 78-81
  • 54 Boyle P J, Liggett S B, Shah S D, Cryer P E. Direct muscarinic cholinergic inhibition of hepatic glucose production in humans.  J Clin Invest. 1988;  82 445-449

D. D’Alessio, M. D.

Division of Endocrinology, University of Cincinnati

ML 0547 · Cincinnati, OH 45267-0547 · USA

Phone: + 1 (513) 558-6689

Fax: + 1 (513) 558-8581

Email: dalessd@ucmail.uc.edu