Int J Sports Med 2004; 25(2): 92-98
DOI: 10.1055/s-2004-819945
Training & Testing

© Georg Thieme Verlag Stuttgart · New York

Neural, Metabolic, and Performance Adaptations to Four Weeks of High Intensity Sprint-Interval Training in Trained Cyclists

A.  R.  Creer1 , M.  D.  Ricard1 , R.  K.  Conlee1 , G.  L.  Hoyt1 , A.  C.  Parcell1
  • 1Human Performance Research Center, Brigham Young University, Provo, Utah, USA
Further Information

Publication History

Accepted after revision: May 10, 2003

Publication Date:
26 February 2004 (online)

Abstract

The purpose of this study was to investigate the effects of short-term, high-intensity sprint training on the root mean squared (RMS) and median frequency (MF) derived from surface electromyography (EMG), as well as peak power, mean power, total work, and plasma lactate levels in trained cyclists when performed concurrently with endurance training. Seventeen trained cyclists were randomly assigned to a sprint training (S) group (n = 10, age 25 ± 2.0 y) or a control (C) group (n = 7, age 25 ± 0.5 y). Sprint training was performed bi-weekly for four weeks, comprising a total of 28 min over the training period. EMG measurements were taken before and after training during a series of four 30-s sprints separated by four minutes of active recovery. Plasma lactate, peak power, mean power, and total work were measured during each sprint bout. Following sprint training a significant increase occurred in the RMS of the vastus lateralis with a decrease in MF of the same muscle. Values for the vastus medialis did not change. Pre training exercising plasma lactate values were higher (p < 0.05) in C compared to S, but did not change with training. Exercising plasma lactate values increased (p < 0.05) from pre to post training in S, but were not different from C post training. Total work output increased from pre to post in S (p = 0.06). Peak power, mean power, and V·O2max increased (p < 0.05) pre to post training in S and C, indicating C was not a true control. In conclusion, these data suggest that four weeks of high-intensity sprint training combined with endurance training in a trained cycling population increased motor unit activation, exercising plasma lactate levels, and total work output with a relatively low volume of sprint exercise compared to endurance training alone.

References

  • 1 Andersen J L, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training.  Acta Physiol Scand. 1994;  151 135-142
  • 2 Bogdanis G C, Nevill M E, Lakomy H K, Graham C M, Louis G. Effects of active recovery on power output during repeated maximal sprint cycling.  Eur J Appl Physiol Occup Physiol. 1996;  74 461-469
  • 3 Burke E R. Physiological characteristics of competitive cyclists.  Phys Sportsmed. 1980;  8 78-84
  • 4 Coyle E F, Feiring D C, Rotkis T C, Cote R W 3rd, Roby F B, Lee W. Specificity of power improvements through slow and fast isokinetic training.  J Appl Physiol. 1981;  51 1437-1442
  • 5 Coyle E F, Feltner M E, Kautz S A, Hamilton M T, Montain S J, Baylor A M. Physiological and biomechanical factors associated with elite endurance cycling performance.  Med Sci Sports Exerc. 1991;  23 93-107
  • 6 Dawson B, Fitzsimons M, Green S, Goodman C, Carey M, Cole K. Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training.  Eur J Appl Physiol Occup Physiol. 1998;  78 163-169
  • 7 DeLuca C. The use of electromyography in biomechanics.  J Appl Biomech. 1997;  13 135-163
  • 8 Enoka R M. Neural adaptations with chronic physical activity.  J Biomech. 1997;  30 447-455
  • 9 Harmer A R, McKenna M J, Sutton J R, Snow R J, Ruell P A, Booth J. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans.  J Appl Physiol. 2000;  89 1793-1803
  • 10 Harridge S D, Bottinelli R, Canepari M, Pellegrino M, Reggiani C, Esbjornsson M. Sprint training, in vitro and in vivo muscle function, and myosin heavy chain expression.  J Appl Physiol. 1998;  84 442-449
  • 11 Jeukendrup A E, Craig N P, Hawley J A. The bioenergetics of World Class Cycling.  J Sci Med Sport. 2000;  3 414-433
  • 12 Kraemer W J, Fleck S J, Evans W J. Strength and power training: physiological mechanisms of adaptation.  Exerc Sport Sci Rev. 1996;  24 363-397
  • 13 MacDougall J D, Hicks A L, MacDonald J R, McKelvie R S, Green H J, Smith K M. Muscle performance and enzymatic adaptations to sprint interval training.  J Appl Physiol. 1998;  84 2138-2142
  • 14 MacIsaac D, Parker P A, Scott R N. The short-time Fourier transform and muscle fatigue assessment in dynamic contractions.  J Electromyogr Kinesiol. 2001;  11 439-449
  • 15 Milner-Brown H S, Stein R B, Lee R G. Synchronization of human motor units: possible roles of exercise and supraspinal reflexes.  Electroencephalogr Clin Neurophysiol. 1975;  38 245-254
  • 16 Moritani T, deVries H A. Neural factors versus hypertrophy in the time course of muscle strength gain.  Am J Phys Med. 1979;  58 115-130
  • 17 Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H. Explosive-strength training improves 5-km running time by improving running economy and muscle power.  J Appl Physiol. 1999;  86 1527-1533
  • 18 Pincivero D M, Campy R M, Salfetnikov Y, Bright A, Coelho A J. Influence of contraction intensity, muscle, and gender on median frequency of the quadriceps femoris.  J Appl Physiol. 2001;  90 804-810
  • 19 Sale D G. Influence of exercise and training on motor unit activation.  Exerc Sport Sci Rev. 1987;  15 95-151
  • 20 Sale D G. Neural adaptation to resistance training.  Med Sci Sports Exerc. 1988;  20 (5 Suppl) 135-145
  • 21 Sharp R L, Costill D L, Fink W J, King D S. Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity.  Int J Sports Med. 1986;  7 13-17
  • 22 Simon J, Young J L, Blood D K, Segal K R, Case R B, Gutin B. Plasma lactate and ventilation thresholds in trained and untrained cyclists.  J Appl Physiol. 1986;  60 777-781
  • 23 Sleivert G G, Backus R D, Wenger H A. The influence of a strength-sprint training sequence on multi-joint power output.  Med Sci Sports Exerc. 1995;  27 1655-1665
  • 24 Tanaka H, Bassett D R Jr, Swensen T C, Sampedro R M. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Cycling Federation.  Int J Sports Med. 1993;  14 334-338
  • 25 Wilber R L, Zawadzki K M, Kearney J T, Shannon M P, Disalvo D. Physiological profiles of elite off-road and road cyclists.  Med Sci Sports Exerc. 1997;  29 1090-1094
  • 26 Yao W, Fuglevand R J, Enoka R M. Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions.  J Neurophysiol. 2000;  83 441-452
  • 27 Zhou S, McKenna M J, Lawson D L, Morrison W E, Fairweather I. Effects of fatigue and sprint training on electromechanical delay of knee extensor muscles.  Eur J Appl Physiol Occup Physiol. 1996;  72 410-416

A. C. Parcell

Human Performance Research Center · Brigham Young University

120-E Richards Building · Provo, UT 84602 · USA ·

Phone: +1 801 422-4450

Fax: +1 801 422-0555

Email: allen_parcell@byu.edu