Int J Sports Med 2004; 25(6): 403-408
DOI: 10.1055/s-2004-819942
Training & Testing

© Georg Thieme Verlag Stuttgart · New York

Correlations Between Lactate and Ventilatory Thresholds and the Maximal Lactate Steady State in Elite Cyclists

R. Van Schuylenbergh1 , B. Vanden Eynde1 , P. Hespel1
  • 1Faculty of Physical Education and Physiotherapy, Department of Kinesiology, Exercise Physiology and Biomechanics Laboratory, K.U. Belgium
Further Information

Publication History

Accepted after revision: July 15, 2003

Publication Date:
18 May 2004 (online)

Abstract

We investigated the validity of different lactate and ventilatory threshold methods, to estimate heart rate and power output corresponding with the maximal lactate steady-state (MLSS) in elite cyclists. Elite cyclists (n = 21; 21 ± 0.4 y; V·O2peak, 5.4 ± 0.2 l × min-1) performed either one (n = 10) or two (n = 11) maximal graded exercise tests, as well as two to three 30-min constant-load tests to determine MLSS, on their personal race bicycle which was mounted on an ergometer. Initial workload for the graded tests was 100 Watt and was increased by either 5 % of body mass (in Watt) with every 30 s (T30s), or 60 % of body mass (in Watt) with every 6 min (T6min). MLSS was defined as the highest constant workload during which lactate increased no more than 1 mmol × l-1 from min 10 to 30. In T30s and T6min the 4 mmol (TH-La4), the Conconi (TH-Con) and dmax (TH-Dm) lactate threshold were determined. The dmax lactate threshold was defined as the point that yields the maximal distance from the lactate curve to the line formed by the lowest and highest lactate values of the curve. In T30s also ventilatory (TH-Ve) and Vslope (TH-Vs) thresholds were calculated. Time to exhaustion was 36 ± 1 min for T30s versus 39 ± 1 min for T6min. None of the threshold measures in T30s, except TH-Vs (r² = 0.77 for heart rate) correlated with either MLSS heart rate or power output. During T6min, power output at TH-Dm was closely correlated with MLSS power (r2 = 0.72). Low correlations were found between MLSS heart rate and heart rate measured at TH-Dm (r2 = 0.46) and TH-La4 (r2 = 0.25), respectively, during T6min. It is concluded that it is not possible to precisely predict heart rate or power output corresponding with MLSS in elite cyclists, from a single graded exercise test causing exhaustion within 35 - 40 min. The validity of MLSS predicted from an incremental test must be verified by a 30-min constant-load test.

References

  • 1 Antonutto G, di Prampero P E. The concept of lactate threshold. A short review.  J Sports Med Phys Fitness. 1995;  35 6-12
  • 2 Baldari C, Guidetti L. A simple method for individual anaerobic threshold as predictor of max lactate steady-state.  Med Sci Sports Exerc. 2000;  32 1798-1802
  • 3 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 4 Beneke R. Anaerobic threshold, individual anaerobic threshold and maximal lactate steady state in rowing.  Med Sci Sports Exerc. 1995;  27 863-867
  • 5 Beneke R, Hutler M, Leithauser R M. Maximal lactate-steady-state independent of performance.  Med Sci Sports Exerc. 2000;  32 1135-1139
  • 6 Beneke R, von Duvillard S P. Determination of maximal lactate steady-state response in selected sports events.  Med Sci Sports Exerc. 1996;  28 241-246
  • 7 Bentley D J, McNaughton L R, Batterham A M. Prolonged stage duration during incremental cycle exercise: effects on the lactate threshold and onset of blood lactate accumulation.  Eur J Appl Physiol. 2001;  85 351-357
  • 8 Bentley D J, McNaughton L R, Thompson D, Vleck V E, Batterham A M. Peak power output, the lactate threshold, and time trial performance in cyclists.  Med Sci Sports Exerc. 2001;  33 2077-2081
  • 9 Bentley D J, Wilson G J, Davie A J, Zhou S. Correlations between peak power output, muscular strength and cycle time trial performance in triathletes.  J Sports Med Phys Fitness. 1998;  38 201-207
  • 10 Bourgois J, Vrijens J. The Conconi test: a controversial concept for the determination of the anaerobic threshold in young rowers.  Int J Sports Med. 1998;  19 553-559
  • 11 Chavarren J, Calbet J A. Cycling efficiency and pedalling frequency in road cyclists.  Eur J Appl Physiol. 1999;  80 555-563
  • 12 Cheng B, Kuipers A C, Keizer H A, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate thresholds.  Int J Sports Med. 1992;  13 518-522
  • 13 Conconi F, Grazzy G, Casoni I, Guglielmini C, Borsetto C, Ballarin E, Mazzoni G, Patracchini M, Manfredi F. The Conconi test: methodology after 12 years of application.  Int J Sports Med. 1996;  17 509-519
  • 14 Foxdall P, Sjödin B, Sjödin A, Östman B. The validity and accuracy of blood lactate measurements for prediction of maximal endurance running capacity.  Int J Sports Med. 1994;  15 89-95
  • 15 Hawley J A, Noakes T D. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists.  Eur J Appl Physiol. 1992;  65 79-83
  • 16 Heck H, Mader A, Hess G, Mücke S, Müller R, Hollman W. Justification of the 4-mmol/l lactate threshold.  Int J Sports Med. 1985;  6 117-130
  • 17 Hollmann W. Historical remarks on the development of the aerobic-anaerobic threshold up to 1966.  Int J Sports Med. 1985;  6 109-116
  • 18 Hoogeveen A R, Hoogsteen J, Schep G. The maximal lactate steady state in elite endurance athletes.  Jpn J Physiol. 1997;  47 481-485
  • 19 Ivy J L, Costill D L, VanHandel P J, Essig D A, Lower R W. Alterations in the lactate threshold with changes in substrate availability.  Int J Sports Med. 1981;  2 139-142
  • 20 Jeukendrup A E, Hesselink M KC, Kuipers H, Keizer H A. The Conconi test.  Int J Sports Med. 1996;  18 393-396
  • 21 Jones A M, Carter H. The effect of endurance training on parameters of aerobic fitness.  Sports Med. 2000;  29 373-386
  • 22 MacDougall J D, Wenger H A, Green H J. Physiological Testing of the High-Performance Athlete. Second edition. Champaign, Illinois: Human Kinetics Books 1991
  • 23 Nicholson R M, Sleivert G G. Indices of lactate threshold and their relationship with 10-km running velocity.  Med Sci Sports Exerc. 2001;  33 339-342
  • 24 Roecker K, Schotte O, Nies A M, Horstmann T, Dickhuth H H. Predicting competition performance in long-distance running by means of a treadmill test.  Med Sci Sports Exerc. 1998;  30 1552-1557
  • 25 Sleivert G G, Rowlands D S. Physical and physiological factors associated with success in the triathlon.  Sports Med. 1996;  22 8-18
  • 26 Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold.  Int J Sports Med. 1981;  2 160-165
  • 27 Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate.  Int J Sports Med. 1982;  3 105-110
  • 28 Stepto N K, Hawley J A, Dennis S C, Hopkins W G. Effects of different interval-training programs on cycling time-trial performance.  Med Sci Sports Exerc. 1999;  31 736-741
  • 29 Stockhausen W, Grathwohl D, Bürklin C, Spranz P, Keul J. Stage duration and increase of work load in incremental testing on a cycle ergometer.  Eur J Appl Physiol. 1997;  76 295-301
  • 30 Wasserman K, Whipp B J, Koyal S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243

P. Hespel, Ph. D.

Faculty of Physical Education and Physiotherapy · Katholieke Universiteit Leuven

Tervuursevest 101 · B-3001 Leuven · Belgium

Phone: +32 1632 9091

Fax: +32 1632 9196

Email: peter.hespel@flok.kuleuven.ac.be