Subscribe to RSS
DOI: 10.1055/s-2004-813744
© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York
The Relationship Between Apoptosis and Non-Alcoholic Fatty Liver Disease: An Evolutionary Cornerstone Turned Pathogenic
Apoptose in der nichtalkoholischen Steatohepatitis: Von evolutionärem Eckpfeiler zu pathogenetischem Schlüsselfaktor The authors are grateful to Michael J. Scolaro, MD, and Guido Marquitan, MS (both LTBH Medical Research Institute and Rodos BioTarget), and Maria Eugenia Guicciardi (Mayo Medical School and Foundation) for their critical reading and helpful comments. AC was supported by an institutional grant from the University of Essen (IFORES) and GJG was supported by a grant, DK41876, from the National Institutes of Health and grants from the Mayo Foundation. RKG was supported by the Buddy Taub Foundation and the Stuart Foundation and is grateful for generous private donations to LTBH Medical Research Institute.Publication History
manuscript received: 25.6.2004
manuscript accepted: 29.9.2004
Publication Date:
07 February 2005 (online)
Zusammenfassung
Neueste Daten favorisieren für die nichtalkoholische Fettleber ein pathogenetisches Modell, in dem der Apoptose bei der Initiierung der Leberentzündung und -fibrose eine bedeutende Rolle zukommt. Infolge primärer hepatischer und peripherer Insulinresistenz und konsekutiv alteriertem Glucose- und Fettsäuremetabolismus erfolgt in den Leberparenchymzellen eine vermehrte Akkumulation freier Fettsäuren. Diese sind in der Lage, die hepatozytäre Expression exozellulärer Death-Rezeptoren heraufzuregulieren und damit die zelluläre Vulnerabilität zu erhöhen. Damit können die Hepatozyten durch pro-apoptotische Stimuli zur Apoptose und zur Freisetzung von Entzündungsmediatoren stimuliert werden. Im chronischem Zustand führt dieser Prozess zur Aktivierung von sowohl hepatischen Sternzellen als auch Kupffer-Zellen, wodurch Apoptose und Entzündung mit Zellaktivierung im Rahmen eines circulus vitiosus aufrecht erhalten werden und letztlich zur pro-fibrotischen Kollagensynthese und -ablagerung führen.
Abstract
The data currently available favor a model for the pathogenesis of non-alcoholic fatty liver disease that is based on an apparent sequential relationship of intrahepatic apoptosis, inflammation and fibrogenesis. Based on both hepatic and peripheral insulin resistance, the hepatocellular accumulation of triglycerides, termed steatosis, initially leads to an altered metabolism of glucose and free fatty acids in the liver. In response, increased expression of death receptors in simple steatosis enhances the hepatocytes’ susceptibility for pro-apoptotic stimuli, thus eliciting excessive hepatocyte apoptosis and inflammation. Evidence indicates that these processes, if prolonged, activate both hepatic stellate and Kupffer cells, thus leading to a vicious circle in which apoptosis, inflammation, cellular activation, and collagen deposition are upregulated even further.
Schlüsselwörter
NAFLD - NASH - Apoptose - Entzündung - Fibrose - Entwicklung - Evolution
Key words
NAFLD - NASH - apoptosis - inflammation - fibrosis - development - evolution
References
- 1 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002; 346 1221-1231
- 2 Sheth S G, Gordon F D, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med. 1997; 126 137-145
- 3 Brunt E M, Janney C G, Di Bisceglie A M. et al . Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999; 94 2467-2474
- 4 Farrell G C. Drugs and steatohepatitis. Semin Liver Dis. 2002; 22 185-194
- 5 Ludwig J, Viggiano T R, McGill D B. et al . Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980; 55 434-438
- 6 Canbay A, Higuchi H, Bronk S F. et al . Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002; 123 1323-1330
- 7 Jaeschke H. Inflammation in response to hepatocellular apoptosis. Hepatology. 2002; 35 964-966
- 8 Canbay A, Guicciardi M E, Higuchi H. et al . Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J Clin Invest. 2003; 112 152-159
- 9 Feldstein A E, Canbay A, Angulo P. et al . Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003; 125 437-443
- 10 Thornberry N A. Caspases: key mediators of apoptosis. Chem Biol. 1998; 5 R97-103
- 11 Savill J. Apoptosis in resolution of inflammation. Kidney Blood Press Res. 2000; 23 173-174
- 12 Henson P M, Bratton D L, Fadok V A. The phosphatidylserine receptor: a crucial molecular switch?. Nat Rev Mol Cell Biol. 2001; 2 627-633
- 13 Green D R, Reed J C. Mitochondria and apoptosis. Science. 1998; 281 1309-1312
- 14 Guicciardi M E, Gores G J. Cheating death in the liver. Nat Med. 2004; 10 587-588
- 15 Brill A, Torchinsky A, Carp H. et al . The role of apoptosis in normal and abnormal embryonic development. J Assist Reprod Genet. 1999; 16 512-519
- 16 Guller S, LaChapelle L. The role of placental Fas ligand in maintaining immune privilege at maternal-fetal interfaces. Semin Reprod Endocrinol. 1999; 17 39-44
- 17 Joaquin A M, Gollapudi S. Functional decline in aging and disease: a role for apoptosis. J Am Geriatr Soc. 2001; 49 1234-1240
- 18 Roubenoff R. Catabolism of aging: is it an inflammatory process?. Curr Opin Clin Nutr Metab Care. 2003; 6 295-299
- 19 Krammer P H. CD95’s deadly mission in the immune system. Nature. 2000; 407 789-975
- 20 Greil R, Anether G, Johrer K. et al . Tracking death dealing by Fas and TRAIL in lymphatic neoplastic disorders: pathways, targets, and therapeutic tools. J Leukoc Biol. 2003; 74 311-330
- 21 Zeiss C J. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol. 2003; 40 481-495
- 22 Galle P R, Hofmann W J, Walczak H. et al . Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med. 1995; 182 1223-1230
- 23 Galle P R, Krammer P H. CD95-induced apoptosis in human liver disease. Semin Liver Dis. 1998; 18 141-151
- 24 Yoon J, Gores G. Death receptor-mediated apoptosis and the liver. J Hepatol. 2002; 37 400-410
- 25 Faubion W A, Gores G J. Death receptors in liver biology and pathobiology. Hepatology. 1999; 29 1-4
- 26 Locksley R M, Killeen N, Lenardo M J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001; 104 487-501
- 27 Granger S W, Butrovich K D, Houshmand P. et al . Genomic characterization of LIGHT reveals linkage to an immune response locus on chromosome 19p13.3 and distinct isoforms generated by alternate splicing or proteolysis. J Immunol. 2001; 167 5122-5128
- 28 Abi-Rached L, Gilles A, Shiina T. et al . Evidence of en bloc duplication in vertebrate genomes. Nat Genet. 2002; 31 100-105
- 29 Collette Y, Gilles A, Pontarotti P. et al . A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol. 2003; 24 387-394
- 30 Ashkenazi A, Dixit V M. Death receptors: signaling and modulation. Science. 1998; 281 1305-1308
- 31 Singh A, Ni J, Aggarwal B B. Death domain receptors and their role in cell demise. J Interferon Cytokine Res. 1998; 18 439-450
- 32 Frankel S K, Van Linden A A, Riches D W. Heterogeneity in the phosphorylation of human death receptors by p42(mapk/erk2). Biochem Biophys Res Commun. 2001; 288 313-320
- 33 Canbay A, Friedman S, Gores G J. Apoptosis: The nexus of liver injury and fibrosis. Hepatology. 2004; 39 273-278
- 34 Chen J J, Sun Y, Nabel G J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science. 1998; 282 1714-1717
- 35 Guicciardi M E, Deussing J, Miyoshi H. et al . Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest. 2000; 106 1127-1137
- 36 Guicciardi M E, Miyoshi H, Bronk S F. et al . Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications. Am J Pathol. 2001; 159 2045-2054
- 37 Foghsgaard L, Wissing D, Mauch D. et al . Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol. 2001; 153 999-1010
- 38 Jaeschke H, Gores G J, Cederbaum A I. et al . Mechanisms of hepatotoxicity. Toxicol Sci. 2002; 65 166-176
- 39 Maher J J, Scott M K, Saito J M. et al . Adenovirus-mediated expression of cytokine induced neutrophil chemoattractant in rat liver induces a neutrophilic hepatitis. Hepatology. 1997; 25 624-630
- 40 Lawson J A, Fisher M A, Simmons C A. et al . Parenchymal cell apoptosis as a signal for sinusoidal sequestration and transendothelial migration of neutrophils in murine models of endotoxin and Fas-antibody-induced liver injury. Hepatology. 1998; 28 761-767
- 41 Faouzi S, Burckhardt B E, Hanson J C. et al . Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-kappa B-independent, caspase-3-dependent pathway. J Biol Chem. 2001; 276 49 077-49 082
- 42 Lauber K, Bohn E, Krober S M. et al . Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 2003; 113 717-730
- 43 Ogasawara J, Watanabe-Fukunaga R, Adachi M. et al . Lethal effect of the anti-Fas antibody in mice. Nature. 1993; 364 806-809
- 44 Patel T, Roberts L R, Jones B A. et al . Dysregulation of apoptosis as a mechanism of liver disease: an overview. Semin Liver Dis. 1998; 18 105-114
- 45 Kiener P A, Davis P M, Starling G C. et al . Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J Exp Med. 1997; 185 1511-1516
- 46 Geske F J, Monks J, Lehman L. et al . The role of the macrophage in apoptosis: hunter, gatherer, and regulator. Int J Hematol. 2002; 76 16-26
- 47 Canbay A, Feldstein A E, Higuchi H. et al . Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003; 38 1188-1198
- 48 Jaeschke H, Fisher M A, Lawson J A. et al . Activation of caspase 3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol. 1998; 160 3480-3486
- 49 Canbay A, Feldstein A, Baskin-Bey E. et al . The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther. 2004; 308 1191-1196
- 50 Ziol M, Tepper M, Lohez M. et al . Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis. J Hepatol. 2001; 34 254-260
- 51 Jaeschke H. Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol. 2002; 27 23-27
- 52 Friedman S L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000; 275 2247-2250
- 53 Maher J J. Interactions between hepatic stellate cells and the immune system. Semin Liver Dis. 2001; 21 417-426
- 54 Knittel T, Dinter C, Kobold D. et al . Expression and regulation of cell adhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol. 1999; 154 153-167
- 55 Marra F. Hepatic stellate cells and the regulation of liver inflammation. J Hepatol. 1999; 3 1120-1130
- 56 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis. 2001; 21 397-416
- 57 Paik Y H, Schwabe R F, Bataller R. et al . Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003; 37 1043-1055
- 58 Gressner A M. Mediators of hepatic fibrogenesis. Hepatogastroenterology. 1996; 43 92-103
- 59 Saile B, DiRocco P, Dudas J. et al . IGF-I induces DNA synthesis and apoptosis in rat liver hepatic stellate cells (HSC) but DNA synthesis and proliferation in rat liver myofibroblasts (rMF). Lab Invest. 2004; 84 1037-1049
- 60 Klaunig J E, Babich M A, Baetcke K P. et al . PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol. 2003; 33 655-780
- 61 Feldstein A, Canbay A, Guicciardi M E. et al . Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol. 2003; 39 978-983
- 62 Papathanassoglou E D, Moynihan J A, Ackerman M H. Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med. 2000; 28 537-549
- 63 Denk H, Stumptner C, Fuchsbichler A. et al . [Alcoholic and nonalcoholic steatohepatitis. Histopathologic and pathogenetic considerations]. Pathologe. 2001; 22 388-398
- 64 Jaeschke H. Redox considerations in hepatic injury and inflammation. Antioxid Redox Signal. 2002; 4 699-700
- 65 Rust C, Gores G J. Apoptosis and liver disease. Am J Med. 2000; 108 567-574
- 66 Tinel M, Berson A, Vadrot N. et al . Subliminal Fas stimulation increases the hepatotoxicity of acetaminophen and bromobenzene in mice. Hepatology. 2004; 39 655-666
- 67 Canbay A, Chen S Y, Gieseler R K. et al . Overweight patients are more susceptible for acute liver failure. Hepatogastroenterology. 2005; in press
- 68 Feldstein A E, Werneburg N W, Canbay A. et al . Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004; 40 185-194
- 69 Valentino K L, Gutierrez M, Sanchez R. et al . First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther. 2003; 41 441-449
- 70 Eichhorst S T, Krueger A, Muerkoster S. et al . Suramin inhibits death receptor-induced apoptosis in vitro and fulminant apoptotic liver damage in mice. Nat Med. 2004; 10 602-609
Ali Canbay, MD
Division of Gastroenterology and Hepatology, Department of Medicine, University Hospital, University of Duisburg-Essen
Hufelandstr. 55
45122 Essen
Germany
Phone: ++ 49/2 01/7 23-36 11
Fax: ++ 49/2 01/7 23-59 70
Email: Ali.Canbay@Uni-Essen.de