Subscribe to RSS
DOI: 10.1055/s-2002-33255
A Novel Approach Using Transcomplementing Adenoviral Vectors for Gene Therapy of Adrenocortical Cancer
This work was supported in part by a grant from Studienstiftung des Deutschen Volkes and BASF AG to G.W.W. and a Heisenberg grant to S.R.B.Publication History
Received 5 February 2002
Accepted after Revision 11 March 2002
Publication Date:
12 August 2002 (online)
Abstract
Current therapies for adrenocortical carcinomas do not improve the life expectancy of patients. In this study, we tested whether a gene-transfer therapy based upon a suicide gene/prodrug system would be effective in an animal model of the disease. We employed E4- and E1A/B-depleted, herpes simplex virus-thymidine kinase-expressing adenoviral mutants that transcomplement each other within tumor cells, hereby improving transgene delivery and efficacy by viral replication in situ. Transcomplementation of vectors increased the fraction of transduced of tumor cells. This increase was accompanied by greater tumor volume reduction compared to non-transcomplementing approaches. Survival time improved with non-replicating vectors plus GCV compared to controls. However, transcomplementation/replication of vectors led to a further significant increment in anti-tumor activity and survival time (p < 0.02). In treated animals, we observed a high number of apoptotic nuclei both adjacent to and distant from injection sites and sites of viral oncolysis. Ultrastructural analyses exhibited nuclear inclusion bodies characteristic of virus production in situ, and provided further evidence that this therapy induced apoptotic cell death within tumor cells. We conclude that the efficacy of suicide gene therapy is significantly amplified by viral replication and, in combination with GCV, significantly reduces tumor burden and increases survival time.
Key words
Adrenal Gland - Cancer - Gene Therapy - Adenovirus - Transcomplementing - Bicistronic
References
- 1 Harrison L E, Gaudin P B, Brennan M F. Pathologic features of prognostic significance for adrenocortical carcinoma after curative resection. Arch Surg. 1999; 134 181-185
- 2 Mayer S K, Oligny L L, Deal C, Yazbeck S, Gagne N, Blanchard N. Childhood adrenocortical tumors: case series and reevaluation of prognosis - a 24-year experience. J Pediatr Surg. 1997; 32 911-915
- 3 Teinturier C, Pauchard M S, Brugieres L, Landais P, Chaussain J L, Bougneres P F. Clinical and prognostic aspects of adrenocortical neoplasms in childhood. Med Pediatr Oncol. 1999; 32 106-111
- 4 Bornstein S R, Stratakis C A, Chrousos G P. Adrenocortical tumors: recent advances in basic concepts and clinical management. Ann Intern Med. 1999; 130 759-771
- 5 Marx C, Wolkersdörfer G W, Brown J W, Scherbaum W A, Bornstein S R. MHC class II expression - a new tool to assess dignity in adrenocortical tumours. J Clin Endocrinol Metab. 1996; 81 4488-4491
- 6 Willenberg H S, Stratakis C A, Marx C, Ehrhart-Bornstein M, Chrousos G P, Bornstein S R. Aberrant interleukin-1 receptors in a cortisol-secreting adrenal adenoma causing Cushing’s syndrome. N Engl J Med. 1998; 339 27-31
- 7 Hogan T F, Citrin D L, Johnson B M, Nakamura S, Davis T E, Borden E C. o,p’-DDD (mitotane) therapy of adrenal cortical carcinoma: observations on drug dosage, toxicity, and steroid replacement. Cancer. 1978; 42 2177-2181
- 8 Schteingart D E, Sinsheimer J E, Counsell R E, Abrams G D, McClellan N, Djanegara T, Hines J, Ruangwises N, Benitez R, Wotring L L. Comparison of the adrenalytic activity of mitotane and a methylated homolog on normal adrenal cortex and adrenal cortical carcinoma. Cancer Chemother Pharmacol. 1993; 31 459-466
- 9 Zidan J, Shpendler M, Robinson E. Treatment of metastatic adrenal cortical carcinoma with etoposide (VP- 16) and cisplatin after failure with o,p’DDD. Clinical case reports. Am J Clin Oncol. 1996; 19 229-231
- 10 Fekete E, Little C C. Histological study of adrenal cortical carcinoma in gonadectomized mice of the ce strain. Cancer Res. 1945; 5 220-226
- 11 El Bolkainy M N, Pierce G BJ, French A J. Regression of an adrenal cortical carcinoma by estradiol treatment. Cancer Res. 1967; 27 1846-1854
- 12 Leibovitz A, McCombs W M, Johnston D, McCoy C E, Stinson J C. New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst. 1973; 51 691-697
- 13 Danesi R, Agen C, Bernardini N, Costa M, Del Tacca M. The antiproliferative effect of suramin on the cancer cell line SW-13 is mediated by the inhibition of transforming growth factor beta 1 (TGF- beta 1). Pharmacol Res. 1992; 25 Suppl. 1 17-18
- 14 La Rocca R V, Stein C A, Danesi R, Jamis-Dow C A, Weiss G H, Myers C E. Suramin in adrenal cancer: modulation of steroid hormone production, cytotoxicity in vitro, and clinical antitumor effect. J Clin Endocrinol Metab. 1990; 71 497-504
- 15 Wu Y W, Chik C L, Knazek R A. An in vitro and in vivo study of antitumor effects of gossypol on human SW-13 adrenocortical carcinoma. Cancer Res. 1989; 49 3754-3758
- 16 Verma I M, Somia N. Gene therapy - promises, problems and prospects (news). Nature. 1997; 389 239-242
- 17 Nanni P, Forni G, Lollini P L. Cytokine gene therapy: hopes and pitfalls. Ann Oncol. 1999; 10 261-266
- 18 Asselin-Paturel C, Lassau N, Guinebretiere J M, Zhang J, Gay F, Bex F, Hallez S, Leclere J, Peronneau P, Mami-Chouaib F, Chouaib S. Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography (In Process Citation). Gene Ther. 1999; 6 606-615
- 19 Cao Y, O’Reilly M S, Marshall B, Flynn E, Ji R W, Folkman J. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest. 1998; 101 1055-1063
- 20 Lin P, Buxton J A, Acheson A, Radziejewski C, Maisonpierre P C, Yancopoulos G D, Channon K M, Hale L P, Dewhirst M W, George S E, Peters K G. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl. Acad Sci USA. 1998; 95 8829-8834
- 21 Tanaka T, Manome Y, Wen P, Kufe D W, Fine H A. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nat Med. 1997; 3 437-442
- 22 Moolten F L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986; 46 5276-5281
- 23 Moolten F L, Wells J M. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst. 1990; 82 297-300
- 24 Bi W L, Parysek L M, Warnick R, Stambrook P J. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther. 1993; 4 725-731
- 25 Ishii-Morita H, Agbaria R, Mullen C A, Hirano H, Koeplin D A, Ram Z, Oldfield E H, Johns D G, Blaese R M. Mechanism of “bystander effect” killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment. Gene Ther. 1997; 4 244-251
- 26 Touraine R L, Ishii-Morita H, Ramsey W J, Blaese R M. The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther. 1998; 5 1705-1711
- 27 Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl. Acad Sci USA. 1996; 93 1831-1835
- 28 Caplen N J, Higginbotham J N, Scheel J R, Vahanian N, Yoshida Y, Hamada H, Blaese R M, Ramsey W J. Adeno-retroviral chimeric viruses as in vivo transducing agents. Gene Ther. 1999; 6 454-459
- 29 Bischoff J R, Kirn D H, Williams A, Heise C, Horn S, Muna M, Ng L, Nye J A, Sampson-Johannes A, Fattaey A, McCormick F. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells (see comments). Science. 1996; 274 373-376
- 30 Wildner O, Morris J C, Vahanian N N, Ford H J, Ramsey W J, Blaese R M. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther. 1999; 6 57-62
- 31 Heise C, Sampson-Johannes A, Williams A, McCormick F, von Hoff D D, Kirn D H. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997; 3 639-645
- 32 Brand K, Arnold W, Bartels T, Lieber A, Kay M A, Strauss M, Dorken B. Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors. Cancer Gene Ther . 1997; 4 9-16
- 33 van der Eb M M, Cramer S J, Vergouwe Y, Schagen F H, van Krieken J H, van der Eb A J, Rinkes I H, van de Velde C J, Hoeben R C. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther. 1998; 5 451-458
- 34 Bridge E, Medghalchi S, Ubol S, Leesong M, Ketner G. Adenovirus early region 4 and viral DNA synthesis. Virology. 1993; 193 794-801
- 35 Graham F L, Smiley J, Russell W C, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977; 36 59-74
- 36 Lozier J N, Yankaskas J R, Ramsey W J, Chen L, Berschneider H, Morgan R A. Gut epithelial cells as targets for gene therapy of hemophilia. Hum Gene Ther. 1997; 8 1481-1490
- 37 Graham F L, Harrison T, Williams J. Defective transforming capacity of adenovirus type 5 host-range mutants. Virology . 1978; 86 10-21
- 38 Okada T, Ramsey W J, Munir J, Wildner O, Blaese R M. Efficient directional cloning of recombinant adenovirus vectors using DNA-protein complex. Nucleic Acids Res. 1998; 26 1947-1950
- 39 Barth R JJ, Bock S N, Mulé J J, Rosenberg S A. Unique murine tumor-associated antigens identified by tumor infiltrating lymphocytes. J Immunol. 1990; 144 1531-1537
- 40 Shtrichman R, Kleinberger T. Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol. 1998; 72 2975-2982
- 41 Marcellus R C, Lavoie J N, Boivin D, Shore G C, Ketner G, Branton P E. The early region 4orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol. 1998; 72 7144-7153
- 42 Alemany R, Lai S, Lou Y C, Jan H Y, Fang X, Zhang W W. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther. 1999; 6 21-25
- 43 Heise C C, Williams A M, Xue S, Propst M, Kirn D H. Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res. 1999; 59 2623-2628
- 44 Wildner O, Blaese R M, Morris J C. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res. 1999; 59 410-413
- 45 Trosko J E, Ruch R J. Cell-cell communication in carcinogenesis. Front Biosci. 1998; 3 D208-D236
- 46 Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli M L, Omori Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. CR Acad Sci III . 1999; 322 151-159
- 47 Murray S A, Fishman L A, Brown J, Bornstein S R. Alpha1 connexin 43 gap junctions are decreased in human adrenocortical tumors. J Clin Endocrinol Metab. 2000; 85 890-895
- 48 Touraine R L, Vahanian N, Ramsey W J, Blaese R M. Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Hum Gene Ther. 1998; 9 2385-2391
- 49 Wolkersdörfer G W, Marx C, Brown J W, Scherbaum W A, Bornstein S R. Evaluation of apoptotic parameters in normal and neoplastic human adrenal. Endocr Res. 1996; 22 411-419
- 50 Wolkersdörfer G W, Lohmann T, Marx C, Schröder S, Pfeiffer R, Stahl H-D, Scherbaum W A, Chrousos G P, Bornstein S R. Lymphocytes stimulate dehydroepiandrosterone production through direct cellular contact with adrenal zona reticularis cells: A novel mechanism of immune-endocrine interaction. J Clin Endocrinol Metab. 1999; 84 4220-4227
- 51 Lozier J N, Metzger M E, Donahue R E, Morgan R A. The rhesus macaque as an animal model for hemophilia B gene therapy. Blood. 1999; 93 1875-1881
- 52 Medghalchi S, Padmanabhan R, Ketner G. Early region 4 modulates adenovirus DNA replication by two genetically separable mechanisms. Virology. 1997; 236 8-17
- 53 Bondesson M, Ohman K, Manervik M, Fan S, Akusjärvi G. Adenovirus E4 open reading frame 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter. J Virol. 1996; 70 3844-3851
- 54 Kleinberger T, Shenk T. Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J Virol. 1993; 67 7556-7560
- 55 Müller U, Kleinberger T, Shenk T. Adenovirus E4orf4 protein reduces phosphorylation of c-Fos and E1A proteins while simultaneously reducing the level of AP-1. J Virol. 1992; 66 5867-5878
- 56 Williams J, Grodzicker T, Sharp P, Sambrook J. Adenovirus recombination: Physical mapping of crossover events. Cell. 1975; 4 113-119
G. W. Wolkersdörfer
Medical Department I · Faculty of Medicine Carl Gustav Carus · Technical University of Dresden
Fetscherstr. 74 · 01307 Dresden · Germany ·
Phone: + 49 (351) 458-2610
Fax: + 49 (351) 458-4394