Subscribe to RSS
DOI: 10.1055/s-2002-20460
A Molten n-Bu4NOAc/n-Bu4NBr Mixture as an Efficient Medium for the Stereoselective Synthesis of (E)- and (Z)-3,3-Diarylacrylates
Publication History
Publication Date:
05 February 2007 (online)
Abstract
The palladium-catalyzed reaction of neutral, slightly electron-rich and slightly electron-poor aryl iodides with methyl cinnamate in a molten n-Bu4NOAc/n-Bu4NBr 2:1.5 mixture provides a highly stereoselective route to (E)-3,3-diarylacrylates. Phosphine-free Pd(OAc)2 is employed as precursor of Pd(0) species. The reaction of a variety of methyl 3-arylacrylates with phenyl iodide under the same reaction conditions affords stereoselectively the corresponding (Z)-isomers. The catalyst system can be recycled several times.
Key words
Heck reaction - stereoselectivity - molten salts - palladium - aryl halides
-
1a
Arcadi A.Bernocchi E.Cacchi S.Marinelli F.Ortar G. J. Organomet. Chem. 1989, 368: 249 -
1b
Arcadi A.Bernocchi E.Cacchi S.Marinelli F. Tetrahedron 1991, 47: 1525 -
1c
Cacchi S.Fabrizi G.Gallina C.Pace P. Synlett 1997, 54 -
2a
Cacchi S.Ciattini PG.Morera E.Ortar G. Tetrahedron Lett. 1987, 28: 3039 -
2b
Cacchi S.Ciattini PG.Morera E.Ortar G. Tetrahedron Lett. 1988, 29: 3117 -
2c
Arcadi A.Cacchi S.Marinelli F.Morera E.Ortar G. Tetrahedron 1990, 46: 7151 -
2d
Burini A.Cacchi S.Pace P.Pietroni BR. Synlett 1995, 677 -
3a
Cacchi S.Arcadi A. J. Org. Chem. 1983, 48: 4236 -
3b
Cacchi S.Palmieri G. Synthesis 1984, 575 -
3c
Cacchi S.La Torre F.Palmieri G. J. Organomet. Chem. 1984, 268: C48 -
3d
Arcadi A.Cacchi S.Marinelli F. J. Organomet. Chem. 1986, 312: C27 -
3e
Amorese A.Arcadi A.Bernocchi E.Cacchi S.Cerrini S.Fedeli W.Ortar G. Tetrahedron 1989, 45: 813 -
3f
Arcadi A.Cacchi S.Fabrizi G.Marinelli F.Pace P. Tetrahedron 1996, 56: 6983 -
3g
Cacchi S.Ciattini PG.Morera E.Pace P. Synlett 1996, 545 -
3h
Arcadi A.Cacchi S.Fabrizi G.Marinelli F.Pace P. Synlett 1996, 568 - 4
Almansa C.Gomez LA.Cavalcanti FL.de Arriba AF.Rodriguez R.Carceller E.Garcia-Rafanell J.Forn J. J. Med. Chem. 1996, 39: 2197 - See for examples:
-
5a
Himmelsbach F,Austel V,Linz G,Pieper H,Guth B,Mueller T, andWeisenberger J. inventors; Eur Pat. EP 587,134. ; Chem. Abstr. 1995, 122, 81372k -
5b
Himmelsbach F,Pieper H,Austel V,Linz G,Guth B,Mueller T, andWeisenberger J. inventors; Eur Pat. EP 612,741. ; Chem. Abstr. 1995, 122, 314547p - 6
Kadin SB. inventors; US Pat. US 4,342,781. (Pfizer Inc.) ; Chem. Abstr. 1982, 97, 215790w - 7
Calò V.Nacci A.Monopoli A.Lopez L.di Cosmo A. Tetrahedron 2001, 57: 6071 - 8
Moreno-Mañas M.Pérez M.Pleeixats R. Tetrahedron Lett. 1999, 37: 7449 - 9
Gürtler C.Buchwald SL. Chem.-Eur. J. 1999, 5: 3107 - 10
Blettner CG.König WA.Stenzel W.Shotten T. Tetrahedron Lett. 1999, 40: 2101 -
17a
Ito Y.Hirao T.Saegusa T. J. Org. Chem. 1987, 43: 1011 -
17b
Minami I.Nisar M.Yuhara M.Shimizu I.Tsuji J. Synthesis 1987, 992 -
17c
Nokami J.Mandai T.Watanabe H.Ohyama H.Tsuji J. J. Am. Chem. Soc. 1989, 111: 4126 -
17d
Lemke FR.Kubiak CP. J. Organomet. Chem. 1989, 373: 391 -
17e
Genet JP.Blart E.Savignac M. Synlett 1992, 715 -
17f
Ogoshi S.Morimoto T.Nishio K.-I.Ohe K.Murai S. J. Org. Chem. 1993, 58: 9 -
17g
Sodoeka M.Ohrai K.Shibasaki M. J. Org. Chem. 1995, 60: 2648 -
17h
Sodoeka M.Tokunoh R.Miyazaki F.Hagiwara E.Shibasaki M. Synlett 1997, 463 -
17i
Shim J.-G.Nakamura H.Yamamoto Y. J. Org. Chem. 1998, 63: 8470 -
17j
Garg N.Larhed M.Hallberg A. J. Org. Chem. 1998, 63: 4158 -
17k
Albeniz AC.Catalina NM.Espinet P.Redon R. Organometallics 1999, 18: 5571 - 17
Kawatsura M.Hartwig JF. J. Am. Chem. Soc. 1999, 121: 1473 -
18a
Reetz MT.Maase M. Adv. Mater. 1999, 11: 773 -
18b
Reetz MT.Westermann E. Angew. Chem. Int. Ed. 2000, 39: 165 - 19
Amatore C.Jutand A. Acc. Chem. Res. 2000, 33: 314 - For other references dealing with the stabilization of palladium catalysts by halide salts, see:
-
20a
Herrmann WH.Brossmer C.Öfele K.Reisinger C.-P.Priermeier T.Beller M.Fisher H. Angew. Chem., Int. Ed. Engl. 1995, 34: 1844 -
20b
Herrmann WA.Boehm VPW. J. Organomet. Chem. 1999, 572: 141 -
20c
Kaufmann DE.Nouroozian M.Henze H. Synlett 1996, 1091 -
20d
Boehm VP.Herrmann WA. Chem.-Eur. J. 2000, 6: 1017 ; see alsoref. 5
References
The stereochemistry of vinylic substitution products obtained via our model reaction was established by NOE experiments on pure isomers. That of the other vinylic substitution derivatives has been assigned based on these data.
12Interestingly, methyl 3-(p-methoxyphenyl)-3-phenylacrylate and methyl cinnamate were recovered in only 30 and 20% yield, respectively, when they were separately subjected to n-Bu4NOAc at 100 °C for 7 h omitting all the other reactants. The corresponding acids were isolated in 70 and 67% yield.
13A typical procedure for the preparation of 3 is as follows:
to a stirred solution of methyl cinnamate (0.104 g, 0.641 mmol), p-iodoanisole (0.225 g, 0.962 mmol), tetrabutylammonium acetate (0.387 g, 1.284 mmol) and tetrabutylammonium bromide (0.310 g, 0.962 mmol) at 100 °C under argon, palladium diacetate (0.007 g, 0.032 mmol) was added. The mixture was stirred at the same temperature for 3 h. Then it was diluted with ethyl acetate, washed with water, dried over Na2SO4, and evaporated under vacuum. The residue was chromatographed on silica gel eluting with n-hexane/ethyl acetate (92/8 v/v) to afford 0.134 g (78%) of methyl 3-(p-methoxyphenyl)-3-phenylacrylate (E:Z > 99:1). A sample was further purified through preparative HPLC to give pure methyl (E)-3-(p-methoxyphenyl)-3-phenylacrylate: Mp 70-71 °C; IR (KBr): 1724 cm-1; 1H NMR: δ = 7.43-7.38 (m, 3 H), 7.30-7.20 (m, 4 H), 6.89-6.82 (m, 2 H), 6.35 (s, 1 H), 3.82 (s, 3 H), 3.62 (s, 3 H); 13C NMR: δ = 166.6, 160.9, 156.9, 139.1, 133.1, 129.8, 129.1, 128.1, 127.9, 114.7, 113.8, 55.4, 51.2; MS: m/z (relative intensity) = 268(100) [M+], 237(81), 165(47), 135(36). Anal. Calcd for C17H16O3: C, 76.12; H, 6.01. Found: C, 76.01; H, 6.12.
Selected NMR and MS data for (Z)-3-(p-methoxyphenyl)-3-phenylacrylate: 1H NMR: δ = 7.36-7.29 (m, 5 H), 7.20-7.15 (m, 2 H), 6.94-6.89 (m, 2 H), 6.29 (s, 1 H), 3.85 (s, 3 H), 3.65 (s, 3 H); 13C NMR: δ = 166.6, 159.8, 157.1, 141.5, 130.9, 130.8, 129.4, 128.6, 128.3, 116.2, 113.2, 55.2, 51.2; Anal. Calcd for C17H16O3: C, 76.15; H, 6.02. MS: m/z (relative intensity)= 268(100) [M+], 237(77), 165(53), 135(30).
14A typical procedure for the preparation of cinnamate esters is as follows: to a solution of methyl acrylate (422 µL, 4.68 mmol), p-iodoanisole (365 mg, 1.56 mmol), and Et3N (653 µL, 4.68 mmol) in DMF (2 mL) Pd(OAc)2 (7 mg, 0.03 mmol) was added. The solution was stirred at 80 °C for 24 h under argon. After cooling, the reaction mixture was diluted with ethyl acetate, washed with water, dried over Na2SO4, and evaporated under vacuum. The residue was chromatographed on silica gel eluting with n-hexane/ethyl acetate (90/10 v/v) to afford 279 mg (93% yield) of methyl 3-(p-methoxyphenyl)acrylate: Mp 87-88 °C; IR (KBr): 1717 cm-1; 1H NMR: δ = 7.64 (d, 1 H, J = 15.94 Hz), 7.50-7.43 (m, 2 H), 6.92-6.86 (m, 2 H), 6.30 (d, 1 H, J = 16 Hz), 3.83 (s, 3 H), 3.79 (s, 3 H); 13C NMR: δ = 167.8, 161.4, 144.5, 129.7, 127.1, 115.3, 114.3, 55.4, 51.6; MS: m/z (relative intensity) = 192(73) [M+], 161(100), 133(27). Anal. Calcd for C11H12O3: C, 68.74; H, 6.29. Found: C, 68.60; H, 6.37.
15Recycles were carried out by extracting the reaction mixture with diethyl ether and adding n-Bu4OAc to the mixture of the remaining ammonium salts to restore the proper amount of acetate anions (during the vinylic substitution reaction acetate anions are converted into acetic acid, which is lost in the extraction).