Horm Metab Res 2001; 33(9): 511-519
DOI: 10.1055/s-2001-17213
Review

© Georg Thieme Verlag Stuttgart · New York

Apoptosis: Live Or Die - Hard Work Either Way!

B. W. Gallaher, R. Hille, K. Raile, W. Kiess
  • Children’s Hospital, University of Leipzig, Germany
Further Information

Publication History

Publication Date:
17 September 2001 (online)

This review presents a brief overview of the cell's apoptotic machinery, including specific and indirect death signals. Specific death signals are transferred via death ligands, death receptors, and their intracellular signalling pathways. Indirect death signals cumulate a wide range of stimuli that potentially harm survival of cells. These include intercalating drugs, irradiation or altered intracellular signalling. Herein, a focal point is the mitochondrial control of specific death enzymes - so called caspases - by members of the pro-apoptotic Bax and BH3 subfamily or the anti-apoptotic Bcl-2 subfamily. While the initiation of cell death happens through a variety of signalling systems, the activation of caspases plays a pivotal role in the progression towards the final morphologic findings in cells undergoing apoptosis. Caspases appear to directly cleave and inactivate substrates that are clinical for the maintenance of cell structure and function but also regulate the activity of other enzymes that induce the apoptotic phenotype within the cell. The insulin-like growth factors (IGFs) are potent proliferation factors and potently inhibit apoptosis acting via the ubiquitously expressed IGF-I receptor. Within IGF-I receptor signalling, key to the inhibition of apoptosis are the RAS/RAF/mitogen-activated protein (MAP)-kinase pathway and the PI 3'-kinase pathway. To give an example of high clinical relevance of apoptosis within endocrine disorders, apoptotic death of pancreatic beta cells in type 1 diabetes disease and the involvement of IGF-II in beta cell survival and beta cell function is discussed in detail. Finally, further understanding of signalling systems that are involved in proliferation or in apoptosis might provide novel tools to treat or even haeal disorders like type I diabetes.

 References

  • 1 Kiess W, Gallaher B W. Hormonal control of programmed cell death/apoptosis.  Eur J Endocrinol. 1998;  138 482-491
  • 2 Ashkenazi A, Dixit V M. Death receptors: signalling and modulation.  Science. 1998;  281 1305-1308.
  • 3 Marsters S A, Sheridan J P, Pitti R M, Brush J, Goddard A, Ashkenazi A. Identification of a ligand for the death-domain-containing receptor Apo3.  Curr Biol. 1998;  8 525-528
  • 4 Marsters S A, Pitti R A, Sheridan J P, Ashkenazi A. Control of apoptosis signalling by Apo2 ligand.  Rec Prog Horm Res. 1999;  54 225-234
  • 5 Medema J P, de Jong J, van Hall T, Melief C J, Offringa R. Immune escape of tumours in vivo by expression of cellular FLICE-inhibitory protein.  J Exp Med. 1999;  190 1033-1038
  • 6 Chang H Y, Nishitoh H, Yang X, Ichijo H, Baltimore D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adaptor protein Daxx.  Science. 1998;  281 1860-1863
  • 7 Hofmann K. The modular nature of apoptotic signalling proteins.  Cell Mol Life Sci. 1999;  55 1113-1128
  • 8 Wang C Y, Mayo M W, Komeluk R G, Goeddel D V, Baldwin A S Jr. NF-kappa B antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.  Science. 1998;  281 1680-1683
  • 9 Deveraux O L, Roy N, Stennicke H R, Van Arsdale T, Zhou Q, Srinivasula S M, Alnemri E S, Salvesen G S, Reed J C. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases.  EMBO J. 1998;  17 2215-2223
  • 10 Jones J L, Walker R A. Integrins: a role as cell signalling molecules.  Mol Pathol. 1999;  52 208-213
  • 11 Smets L A, Salomons G, van den Berg J. Glucocorticoid induced apoptosis in leukaemia.  Adv Exp Med Biol. 1999;  457 607-614
  • 12 Mui A L. The role of STATs in proliferation, differentiation, and apoptosis.  Cell Mol Life Sci. 1999;  55 1547-1558
  • 13 Zhivotovsky B, Joseph B, Orrenius S. Tumor radiosensitivity and apoptosis.  Exp Cell Res. 1999;  248 10-17
  • 14 Nitiss J L, Beck W T. Antitopoisomerase drug action and resistance.  Eur J Cancer. 1996;  32A 958-966
  • 15 Evan G, Littlewood T. A matter of life and cell death.  Science. 1998;  281 1317-1322
  • 16 Xiang H, Kinoshita Y, Knudson C M, Korsmeyer S J, Schwartzkroin P A, Morrison R S. Bax involvement in p53-mediated neuronal cell death.  J Neurosci. 1998;  18 1363-1373.
  • 17 Kannan K, Amariglio N, Rechavi G, Givol D. Profile of gene expression regulated by induced p53: connection to the TGF-beta family.  FEBS Lett. 2000;  470 77-82
  • 18 Green D R, Reed J C. Mitochondria and apoptosis.  Science. 1988;  281 1309-1312
  • 19 Minn A J, Velez P, Schendel S L, Liang H, Muchmore S W, Fesik S W, Fill M, Thompson C B. Bcl-x(L) forms an ion channel in synthetic lipid membranes.  Nature. 1997;  385 353-357
  • 20 Matsuyama S, Xu Q, Velopurs J, Reed J C. The mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells.  Mol Cell. 1998;  1 327-336
  • 21 Jurgensmeier J M, Krajewski S, Armstrong R C, Wilson G M, Oltersdorf T, Fritz L C, Reed J C, Ottilie S. Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe.  Mol Biol Cell. 1997;  8 325-339
  • 22 Hu Y, Benedict M A, Ding L, Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis.  EMBO J. 1999;  18 3586-3595
  • 23 Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival.  Science. 1998;  281 1322-1326
  • 24 Yamamoto K, Ichijo H, Korsmeyer S J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M.  Mol Cell Biol. 1999;  19 8469-8478
  • 25 Kulik G, Weber M. Akt-dependent and -independent survival signalling pathways utilized by insulin-like growth factor I.  Mol Cell Biol. 1998;  18 6711-6718
  • 26 Cohen G M. Caspases: the executioners of apoptosis.  Biochem J. 1997;  326 1-16
  • 27 Wang I K, Lin-Shiau S Y, Lin J K. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells.  Eur J Cancer. 1999;  35 1517-1525
  • 28 Talanian R V, Yang X, Turbov J, Seth P, Ghayur T, Casiano C A, Orth K, Froelich C J. Granule-mediated killing: pathways for granzyme B-initiated apoptosis.  J Exp Med. 1997;  186 1323-1331
  • 29 Zheng T S, Schlosser S F, Dao T, Hingorani R, Crispe I N, Boyer J L, Flavell R A. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo.  Proc Natl Acad Sci. 1998;  95 13 618-13 623
  • 30 Janicke R U, Ng P, Sprengart M L, Porter A G. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis.  J Biol Chem. 1998;  273 15 540-15 545
  • 31 Buendia B, Santa-Maria A, Courvalin J C. Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis.  J Cell Sci. 1999;  112 1743-1753
  • 32 McCarty J S, Toh S Y, Li P. Multiple domains of DFF45 bind synergistically to DFF40: roles of caspase cleavage and sequestration of activator domain of DFF40.  Biochem Biophys Res Commun. 1999;  264 181-185
  • 33 Geng Y J, Azuma T, Tang J X, Hartwig J H, Muszynski M, Wu O, Libby P, Kwiatkowski D J. Caspase-3-induced gelsolin fragmentation contributes to actin cytoskeletal collapse, nucleolysis, and apoptosis of vascular smooth muscle cells exposed to proinflammatory cytokines.  Eur J Cell Biol. 1998;  77 294-302
  • 34 Sgorbissa A, Benetti R, Marzinotto S, Schneider C, Brancolini C. Caspase-3 and caspase-7 but not caspase-6 cleave Gas2 in vitro: implications for microfilament reorganization during apoptosis.  J Cell Sci. 1999;  112 4475-4482
  • 35 Chen O, Gong B, Almasan A. Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis.  Cell Death Differ. 2000;  7 227-233
  • 36 Susin S A, Lorenzo H K, Zamzami N, Marzo I, Snow B E, Brothers G M, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett D R, Aebersold R, Siderovski D P, Penninger J M, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor.  Nature. 1999;  397 441-446
  • 37 Herzlieb N, Gallaher B W, Berthold A, Hille R, Kiess W. IGF-I inhibits the progression of human U-2 OS osteosarcoma cells towards pcd through interaction with the IGF-I receptor.  Cell Mol Biol. 2000;  46 71-77
  • 38 Yang B C, Chang H M, Wang Y S, Chen R F, Lin S J. Transient induction of apoptosis in serum-starved glioma cells by insulin and IGF-I.  Biochem Biophys Acta. 1996;  1314 83-92
  • 39 Ciesielski M J, Fenstermaker R A. Synergistic cytotoxicity, apoptosis and protein-linked DNA breakage by etoposide and camptothecin in human U87 glioma cells: dependence on tyrosine phosphorylation.  J Neurooncol. 1999;  41 223-234
  • 40 Valentinis B, Morrione A, Peruzzi F, Prisco M, Reiss K, Baserga R. Anti-apoptotic signalling of the IGF-I receptor in fibroblasts following loss of matrix adhesion.  Oncogene. 1999;  18 1827-1836
  • 41 Valentinis B, Reiss K, Baserga R. Insulin-like growth factor-I-mediated survival from anoikis: role of cell aggregation and focal adhesion kinase.  J Cell Physiol. 1998;  176 648-657
  • 42 Le Roith D, Parrizas M, Blakesley V A. The insulin-like growth factor-I receptor and apoptosis.  Endocrine. 1997;  7 103-105
  • 43 LeRoith D, Werner H, Beitner-Johnson D, Roberts C T. Molecular and cellular aspects of the insulin-like growth factor I receptor.  Jr Endo Rev. 1995;  16 43-163
  • 44 Alessi D R, Cuenda A, Cohen P, Dudley D T, Saltiel A R. PD 098 059 is a specific inhibitor of the activation of mitogen-activated protein kinase. Kinase in vitro and in vivo.  J Biol Chem. 1995;  270 27 489-27 494
  • 45 Dudley D T, Pang L, Decker S J, Bridges A J, Saltiel A R. A synthetic inhibitor of the mitogen-activated protein kinase cascade.  Proc Natl Acad Sci USA. 1995;  92 7686-7689
  • 46 Párrizas M, Saltiel A, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3’-kinase and mitogen-activated protein kinase pathways.  J Biol Chem. 1997;  272 154-161
  • 47 Dhand R, Hara K, Hiles I, Bax B, Gout I, Panayotou G, Fry M J, Yonezawa K, Kasuga M, Waterfield D. PI 3-kinase: structural and functional analysis of intersubunit interactions.  EMBO J. 1994;  13 511-521
  • 48 Vlahos C J, Matter W F, Hui K Y, Brown R F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).  J Biol Chem. 1994;  269 5241-5248
  • 49 Kulik G, Klippel A, Weber M J. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt.  Mol Cell Biol. 1997;  17 1595-1606
  • 50 Dudek H, Datta S R, Franke T F, Birnbaum M J, Yao R, Cooper G M, Segal R A, Kaplan D R, Greenberg M G. Regulation of neuronal survival by the serine-threonine protein kinase Akt.  Science. 1997;  275 661-664
  • 51 Rajah R, Valentinis B, Cohen P. Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-beta1 on programmed cell death through a p53- and IGF-independent mechanism.  J Biol Chem. 1997;  272 12 181-12 188
  • 52 Williams A C, Collard T J, Perks C M, Newcomb P, Moorghen M, Holly J M, Paraskeva C. Increased p53-dependent apoptosis by the insulin-like growth factor binding protein IGFBP-3 in human colonic adenoma-derived cells.  Cancer REs. 2000;  60 22-27
  • 53 Remacle-Bonnet M M, Garrouste F L, Heller S, Andre F, Marvaldi J L, Pommier G J. Insulin-like growth factor-I protects colon cancer cells from death factor-induced apoptosis by potentiating tumor necrosis factor alpha-induced mitogen-activated protein kinase and nuclear factor kappaB signalling pathways,.  Cancer Res. 2000;  60 2007-2017
  • 54 Kawakami A, Nakashima T, Tsuboi M, Urayama S, Matsuoka N, Ida H, Kawabe Y, Sakai H, Migita K, Aoyagi T, Nakashima M, Maeda K, Eguchi K. Insulin-like growth factor I stimulates proliferation and Fas-mediated apoptosis of human osteoblasts.  Biochem Biophys Res Commun. 1998;  247 46-51
  • 55 Kulik G, Weber M. Akt-dependent and -independent survival signalling pathways utilized by insulin-like growth factor I.  Mol Cell Biol. 1998;  18 6711-6718
  • 56 Párrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product.  Endocrinolgy. 1997;  138 1355-1358
  • 57 Tamatani M, Ogawa S, Tohyama M. Roles of Bcl-2 and caspases in hypoxia-induced neuronal cell death: a possible neuroprotective mechanism of peptide growth factors. Brain Res.  Mol Brain Res. 1998;  58 27-39
  • 58 Minshall C, Arkins S, Straza J, Conners J, Dantzer R, Freund G, Kelley K. IL-4 and insulin-like growth factor-I inhibit the decline in Bcl-2 and promote the survival of IL-3-deprived myeloid progenitors.  J Immunol. 1997;  159 1225-1232
  • 59 Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich K A, Boxer L M, Reusch J E. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein.  J Biol Chem. 1999;  274 27 529-27 535
  • 60 Yoon J W, Jun H S, Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration of macrophages and T cells.  Autoimmunity. 1998;  27 109-122
  • 61 Almawi W Y, Tamim H, Azar S T. T helper type 1 and 2 cytokines mediate the onset and progression of type 1 (insulin-dependent) diabetes (Clinical review).  J Clin Endocrinol Metab. 1999;  84 497-1502
  • 62 Laffranchi R, Spinas G A. Interferon-γ inhibits insulin release and induces cell death in the pancreatic beta-cell line INS-1 independently of nitric oxide production.  Exp Cell Res. 1997;  237 217-222
  • 63 Loweth A C, Williams G T, James R F, Scarpello H J, Morgan N G. Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation.  Diabetes. 1998;  47 727-732
  • 64 Stephens L A, Thomas H E, Ming L, Grell M, Darwiche R, Volodin L, Kay T WH. Tumor necrosis factor-α-mediated cell death pathways in NIT-1 insulinoma cells and primary pancreatic β-cells.  Endocrinology. 1999;  140 3219-3227
  • 65 Moriwaki M, Itoh N, Miyagawa J, Yamamoto K, Imagawa A, Yamagata K, Iwahashi H, Nakajima H, Namba M, Nagata S, Hanafusa T, Matzusawa Y. Fas and fas ligand expression in inflamed islets in pancreas sections from patients with recent-onset type I diabetes mellitus.  Diabetologia. 1999;  42 1332-1340
  • 66 Hill D J, Petrik J, Arany E. Growth factors and regulation of fetal growth.  Diabetes Care. 1998;  21 60-69
  • 67 Hill D J, Petrik J, Arany E, McDonald T J, Delovitch T L. Insulin-like growth factors prevent cytokine-mediated cell death in isolated islets of Langerhans from pre-diabetic non obese diabetic mice.  J Endocrinol. 1999;  161 153-165
  • 68 Petrik J, Arany E, McDonald T J. Hill DJ. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor-II that may act as a survival factor.  Endocrinology. 1998;  139 2994-3004
  • 69 Ilieva A, Yuan S, Wang R N, Agapitos D, Hill D J, Rosenberg L. Pancreatic islet cell survival following islet isolation: The role of cellular interactions in the pancreas.  J Endocrinol. 1999;  161 81-90
  • 70 Petrik J, Pell M J, Arany E, McDonald T J, Dean W L, Reik W, Hill D J. Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia.  Endocrinology. 1999;  140 2353-2363
  • 71 Kaino Y, Hirai H, Ito T, Kida K. Prevention of diabetes in non-obese diabetic (NOD) mice by short term and high dose IGF-1 treatment.  J Pediatr Endocrinol Metab. 1998;  11 267-272
  • 72 Hostens K, Pavlovic D, Zambre Y, Ling Z, Van Schravendijk C, Eizirik D L, Pipeleers D G. Exposure of human islets to cytokines can result in dysproportionally elevated proinsulin release.  J Clin Invest. 1999;  104 67-72
  • 73 Zhang Q, Tally M, Larsson O, Kennedy R T, Huang L, Hall K, Berggren P O. Insulin-like growth factor II signalling through the insulin-like growth factor II/mannose-6-phosphate receptor promotes exocytosis in insulin secreting cells.  Proc Natl Acad Sci. 1997;  94 6232-6237
  • 74 Fehmann H C, Jehle P, Markus U, Goke B. Functional active receptors for insulin-like growth factors-I (IGF-I) and and IGF-II on insulin-, glukagon-, and somatostatin-producing cells.  Metabolism. 1996;  45 759-766
  • 75 Asfari M, De W, Noel M, Holthuizen P E, Czernichow P. Insulin-like growth factor II gene expression in a rat insulin-producing beta cell line (INS-1) is regulated by glucose.  Diabetologia. 1995;  38 927-935
  • 76 Cousin S P, Higl S R, Myers M G, White M F, Reifel-Miller A, Rhodes C J. Stimulation of pancreatic beta-cell growth by growth hormone is glucose dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling.  Biochem J. 1999;  344 649-658
  • 77 Shapiro A M, Lakey J R, Ryan E A, Korbutt G S, Toth E, Warnock G L, Kneteman N M, Rajotte R V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen.  N Engl J Med. 2000;  343 230-238
  • 78 Bland B J. International Pancreas Transplant Registry (ITPR) - Annual report for 1997.  ITPR News. 1998;  10 4-14
  • 79 Bretzel R G, Brandhorst D, Brandhorst H. Improved survival of intraportal pancreatic islet cell allografts in patients with type 1 diabetes mellitus by refined peritransplant management.  J Mol Med. 1999;  77 140-143
  • 80 Rabinovitch A, Suerez-Pinzon W, Strynadka K, Ju Q, Edelstein D, Brownlee M, Korbutt G S, Rajotte R V. Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects β-cells from cytokine-induced destruction.  Diabetes. 1999;  48 1223-1229
  • 81 Rhodes C J. IGF-I and GH post receptor signalling mechanisms for pancreatic beta-cell replication.  J Mol Endocrinol. 2000;  24 303-311
  • 82 Zulewski H, Abraham E J, Gerlach M J, Daniel P B, Moritz W, Muller B, Vallejo M, Thomas M K, Habener J F. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes.  Diabetes. 2001;  50 521-533

W. Kiess,M.D. 

Children’s Hospital,
University of Leipzig

Oststraße 21 - 25
04317 Leipzig
Germany


Phone: + 49 (341) 9726-000

Fax: + 49 (341) 9726-009

Email: kiw@server3.medizin.uni-leipzig.de