Exp Clin Endocrinol Diabetes 2000; Vol. 108(6): 389-395
DOI: 10.1055/s-2000-8134
Review

© Johann Ambrosius Barth

Central nervous system structures connected with the endocrine glands. Findings obtained with the viral transneuronal tracing technique

I. Gerendai, B. Halász
  • Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
Further Information

Publication History

Submitted March 17, 2000

Accepted in revised form May 19, 2000

Publication Date:
31 December 2000 (online)

Summary:

This review is a summary of recent neuromorphological observations on the existence of multisynaptic neural pathways between the endocrine glands and the central nervous system (CNS) and its structures involved in this pathway. Introduction of the viral transneuronal tracing technique has made possible investigations of multisynaptic connections. The utility of this approach is based on the ability of the neurotropic virus to invade and replicate in neurons, and then gradually infect synaptically linked second-order, third-order, etc. neurons. Injecting the virus into the endocrine glands, this technique was used to identify cell groups in the spinal cord and in the brain which are connected with the adrenal gland, the gonads and the pancreas. Injection of the virus into these organs resulted in viral labeling of neurons in practically identical structures of the CNS including the intermediolateral cell column of the spinal cord, the vagal nuclei and certain other cell groups in the brain stem. In the hypothalamus the most intensive labeling was in the parvocellular part of the paraventricular nucleus and in the telencephalon labeled nerve cells were detected in the amygdala, the bed nucleus of the stria terminalis and in the preoptic area. It is known that the labeled CNS structures are members of descending pathways arising from the hypothalamic paraventricular nucleus or from other cell groups and terminating on neurons of the vagal nuclei and the intermediolateral cell column of the spinal cord. Experimental data support the view that the CNS structures and pathways connected with the endocrine glands are involved in the neural control of these organs.

References

  • 1 Adachi A, Kobashi M, Miyoshi N, Tsukamoto G. Chemosensitive neurons in the area postrema of the rat and their possible functions.  Brain Res Bull. 26 137-140 1991; 
  • 2 Aujeszky A. A contagious disease, not readily distinguishable from rabies, with unkown origin (in Hungarian).  Veterinarius. 25 387-396 1902; 
  • 3 Bakalkin G, Tsibezov V V, Sjutkin E A, Veselova S P, Novikov I D, Krivosheev O G. Lateralization of LHRH in rat hypothalamus.  Brain Res. 296 361-364 1984; 
  • 4 Bartha A. Experiments to reduce the virulence of Aujeszky's virus (in Hungarian).  Magyar Állatorvosok Lapja. 16 42-45 1961; 
  • 5 Buijs R M. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord.  Cell Tissue Res. 192 423-435 1978; 
  • 6 Buijs R M, Wortel J, van Heerikhuize J J, Feenstra M G, Ter Horst G J, Romijn H J, Kalsbeek A. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway.  Eur J Neurosci. 11 1535-1544 1999; 
  • 7 Card P. Pseudorabies virus replication and assembly in the rodent system. In: Kaplitt MG, Loewy AD (eds.). Viral Vectors, Gene Therapy and Neuroscience Applications Academic Press, New York 319-347 1995
  • 8 Card J P, Enquist L W. Use of pseudorabies virus for definition of synaptically linked neurons.  Methods Mol Genet. 4 363-382 1994; 
  • 9 Cury D L, Safarik R H, Joy R M, Stern J S. Direct neural effect of lateral hypothalamic stimulation on insulin secretion by pancreases of normal and obese rats.  Horm Met Res. 22 129-135 1990; 
  • 10 Engeland W C, Dallmann M F. Neuronal mediation of compensatory adrenal growth.  Endocrinology. 99 1659-1663 1976; 
  • 11 Fukuda M, Yamanouchi K, Nakano Y, Furuya H, Arai Y. Hypothalamic laterality in regulating gonadotropic function: Unilateral hypothalamic lesion and compensatory ovarian hypertrophy.  Neurosci Lett. 51 365-370 1984; 
  • 12 Funahashi M, Adachi A. Glucose-responsive neurons exist within the area postrema of the rat: in vitro study of the isolated slice preparation.  Brain Res Bull. 32 531-535 1993; 
  • 13 Gerendai I. Lateralization of neuroendocrine control. In: Geschwind N, Galaburda AM (eds.). Cerebral Dominance. Biological Fundations Harvard Univ Press, Cambridge 167-178 1984
  • 14 Gerendai I, Halász B. Hemigonadectomy-induced unilateral changes in the protein sythesizing activity of the rat hypothalamic arcuate nucleus.  Neuroendocrinology. 21 311-337 1976; 
  • 15 Gerendai I, Rácz K. Differences in the RNA-synthesizing activity between the two sides of the hypothalamic arcuate neurons following unilateral orchidectomy.  Acta Biol Acad Sci Hung. 26 229-231 1975; 
  • 16 Gerendai I, Rotsztejn W, Marchetti B, Kordon C, Scapagnini U. Unilateral ovariectomy-induced luteinizing hormone-releasing hormone content changes in the two halves of the mediobasal hypothalamus.  Neurosci Lett. 9 333-336 1978; 
  • 17 Gerendai I, Tóth I E, Boldogkó¿i Zs, Medveczky I, Halász B. Neuronal labeling in the rat brain and spinal cord from the ovary using viral transneuronal tracing technique.  Neuroendocrinology. 68 244-256 1998; 
  • 18 Gerendai I, Tóth I E, Boldogkó¿i Zs, Medveczky I, Halász B. CNS structures presumably involved in vagal control of ovarian function.  J Aut Nerv Syst. 80 40-45 2000; 
  • 19 Gerendai I, Tóth I E, Boldogkó¿i Zs, Medveczky I, Halász B. CNS structures labeled from the testis using the transsynaptic tracing technique.  J Neuroendocrinol. (in press); 
  • 20 Halász B, Szentágothai J. Histologischer Beweis einer nervösen Signalübermittlung von der Nebennierenrinde zum Hypothalamus.  Z Zellforsch. 50 297-306 1959; 
  • 21 Holzwarth M A, Dallman M F. The effect of hypothalamic hemi-islands on compensatory adrenal growth.  Brain Res. 162 33-43 1979; 
  • 22 Jansen A SP, Nguyen X V, Karpitsky V, Mettenleiter T G, Loewy A D. Central commend neurons of the sympathetic nervous system: basis of the fight-or-fight response.  Science. 270 644-646 1995; 
  • 23 Jansen A SP, Hoffman J L, Loewy A D. CNS sites involved in sympathetic and parasympathetic control on the pancreas: A viral tracing study.  Brain Res. 766 29-38 1997; 
  • 24 Kawakami M, Kubo K, Uemura T, Nagase M, Hayashi R. Involvement of ovarian innervation in steroid secretion.  Endocrinology. 109 136-145 1981; 
  • 25 Loewy A D, Haxhiu M A. CNS cell groups projecting to pancreatic parasympathetic preganglionic neurons.  Brain Res. 620 323-330 1993; 
  • 26 Loewy A D, Bridgman P C, Mettenleiter T C. β-galactosidase expressing recombinant pseudorabies virus for light and electron microscopic study of transneuronally labeled neurons.  Brain Res. 555 346-352 1991; 
  • 27 Loewy A D, Franklin M F, Haxhiu M A. CNS monoamine cell groups projecting to pancreatic vagal motor neurons: a transneuronal labeling study using pseudorabies virus.  Brain Res. 638 248-260 1994; 
  • 28 Marson L. Identification of central nervous system neurons that innervate the bladder body, bladder base, or external urethral sphincter of female rats: a transneuronal tracing study using pseudorabies virus.  J Comp Neurol. 389 584-602 1997; 
  • 29 Mizuno Y, Oomura Y. Glucose-responding neurons in the nucleus tractus solitarius of the rat: in vitro study.  Brain Res. 307 109-116 1984; 
  • 30 Mizunuma H, DePalatis L R, McCann S M. Effect of unilateral orchidectomy on plasma FSH concentration: Evidence for a direct neural connection between testes and CNS.  Neuroendocrinology. 37 291-296 1983; 
  • 31 Motawei K, Pyner S, Ranson R N, Kamel M, Coote J H. Terminals of paraventricular spinal neurons are closely associated with adrenal medullary sympathetic preganglionic neurons: immunocytochemical evidence for vasopressin as a possible neurotransmitter in this pathway.  Exp Brain Res. 126 68-76 1999; 
  • 32 Nadelhaft I, Vera P L. Central nervous system neurons infected by pseudorabies virus injected into the rat urinary bladder following unilateral transection of the pelvic nerve.  J Comp Neurol. 359 443-456 1995; 
  • 33 Nadelhaft I, Vera P L, Card J P, Miselis R R. Central nervous system neurons labelled following the injection of pseudorabies virus into the rat urinary bladder.  Neurosci Lett. 143 271-274 1992; 
  • 34 Nance D M, Moger W H. Ipsilateral hypothalamic deafferentation blocks the increase in serum FSH following hemicastration.  Brain Res Bull. 8 299-302 1982; 
  • 35 Niijima A, Kannan H, Yamashita H. Nervous regulation of metabolism.  Prog Neurobiol. 33 135-147 1989; 
  • 36 Palkovits M. Interconnections between the neuroendocrine hypothalamus and the central autonomic system.  Front Neuroendocrinol. 20 270-295 1999; 
  • 37 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Third Edition. Academic Press, San Diego 1997
  • 38 Schramm L P, Strack A M, Platt K B, Loewy A D. Peripheral and central pathways regulating the kidney: A study using pseudorabies virus.  Brain Res. 616 251-262 1993; 
  • 39 Standish A, Enquist L W, Escardo J A, Schwaber J S. Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus.  J Neurosci. 15 1998-2012 1995; 
  • 40 Strack A M, Loewy A D. Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system.  J Neurosci. 10 2139-2147 1990; 
  • 41 Strack A M, Sawyer W B, Platt K B, Loewy A D. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus.  Brain Res. 491 274-296 1989; 
  • 42 Swanson L W, McKellar S. The distribution of oxytocin- and vasopressin-stained fibres in the spinal cord of the rat and monkey.  J Comp Neurol. 188 87-106 1979; 
  • 43 Swanson L W, Sawchenko P E. Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei.  Ann Rev Neurosci. 6 269-324 1983; 
  • 44 Tóth I E. Transneuronal labeling of CNS neurons involved in the innervation of the adrenal gland.  Horm Metab Res. 30 329-333 1998; 
  • 45 Tóth I E, Palkovits M. Viral labeling of synaptically connected neurons.  Neurobiology. 5 17-41 1997; 
  • 46 Ugolini G. Transneuronal tracing with alpha-herpesviruses: A review of methodology. In: Kaplitt MG, Loewy AD (eds.). Viral Vectors. Gene Theraphy and Neuroscience Applications Academic Press, New York 293-317 1995
  • 47 Uhlrich-Lai Y M, Engeland W C. Hyperinnervation during adrenal regeneration influences the rate of functional recovery.  Neuroendocrinology. 71 107-123 2000; 
  • 48 Vizzard M A, Ericson V L, Card J P, Roppolo J R, De Groat W C. Transneuronal labeling of neurons in the rat brainstem and spinal cord after injection of pseudorabies virus into the urethra.  J Comp Neurol. 355 629-640 1995; 

MD, DSc Béla Halász

Neuroendocrine Research Laboratory

Department of Human Morphology

Semmelweis University

Tűzoltó utca 58

H-1094 Budapest

Hungary

Phone: +36-1-2 15-5 84

Fax: +36-1-2 15-30 64

Email: halasz@ana2.sote.hu

    >