Semin Respir Crit Care Med 2024; 45(04): 469-478
DOI: 10.1055/s-0044-1787554
Review Article

Dysregulation of Host–Pathogen Interactions in Sepsis: Host-Related Factors

Sebastiaan C.M. Joosten
1   Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
,
Willem J. Wiersinga
1   Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
2   Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
,
Tom van der Poll
1   Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
2   Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
› Author Affiliations
Funding S.C.M.J. is supported by a grant from The Dutch Ministery of Economic Affairs & Health Holland, TKI-program Life Sciences & Health (project DETECT-SEPSIS).

Abstract

Sepsis stands as a prominent contributor to sickness and death on a global scale. The most current consensus definition characterizes sepsis as a life-threatening organ dysfunction stemming from an imbalanced host response to infection. This definition does not capture the intricate array of immune processes at play in sepsis, marked by simultaneous states of heightened inflammation and immune suppression. This overview delves into the immune-related processes of sepsis, elaborating about mechanisms involved in hyperinflammation and immune suppression. Moreover, we discuss stratification of patients with sepsis based on their immune profiles and how this could impact future sepsis management.



Publication History

Article published online:
01 July 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rudd KE, Johnson SC, Agesa KM. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395 (10219): 200-211
  • 2 Wiersinga WJ, van der Poll T. Immunopathophysiology of human sepsis. EBioMedicine 2022; 86: 104363
  • 3 Mantovani A, Garlanda C. Humoral innate immunity and acute-phase proteins. N Engl J Med 2023; 388 (05) 439-452
  • 4 Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence 2014; 5 (01) 36-44
  • 5 Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila toll. Proc Natl Acad Sci U S A 1998; 95 (02) 588-593
  • 6 Murphy K, Weaver C, Berg J. Janeway's Immunobiology. Vol 10. New York, NY:: Garland Science;; 2022
  • 7 van der Poll T, Opal SM. Host-pathogen interactions in sepsis. Lancet Infect Dis 2008; 8 (01) 32-43
  • 8 Chan JK, Roth J, Oppenheim JJ. et al. Alarmins: awaiting a clinical response. J Clin Invest 2012; 122 (08) 2711-2719
  • 9 Opal SM, Laterre PF, Francois B. et al; ACCESS Study Group. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 2013; 309 (11) 1154-1162
  • 10 Prantner D, Nallar S, Vogel SN. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J 2020; 34 (12) 15659-15674
  • 11 Yan Z, Luo H, Xie B. et al. Targeting adaptor protein SLP76 of RAGE as a therapeutic approach for lethal sepsis. Nat Commun 2021; 12 (01) 308
  • 12 Siskind S, Brenner M, Wang P. TREM-1 modulation strategies for sepsis. Front Immunol 2022; 13: 907387
  • 13 François B, Lambden S, Fivez T. et al; ASTONISH investigators. Prospective evaluation of the efficacy, safety, and optimal biomarker enrichment strategy for nangibotide, a TREM-1 inhibitor, in patients with septic shock (ASTONISH): a double-blind, randomised, controlled, phase 2b trial. Lancet Respir Med 2023; 11 (10) 894-904
  • 14 Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets–an updated view. Mediators Inflamm 2013; 2013: 165974
  • 15 Li LL, Dai B, Sun YH, Zhang TT. The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis. Ann Transl Med 2020; 8 (11) 674-674
  • 16 Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in sepsis. Front Immunol 2019; 10: 2536
  • 17 Jin H, Aziz M, Murao A. et al. Antigen-presenting aged neutrophils induce CD4+ T cells to exacerbate inflammation in sepsis. J Clin Invest 2023; 133 (14) e164585
  • 18 Chen Z, Zhang H, Qu M. et al. Review: the emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis. Front Cell Infect Microbiol 2021; 11: 653228
  • 19 Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019; 133 (20) 2178-2185
  • 20 Wang L, Zhou X, Yin Y, Mai Y, Wang D, Zhang X. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Front Immunol 2019; 9 (JAN): 3076
  • 21 Kolaczkowska E. The older the faster: aged neutrophils in inflammation. Blood 2016; 128 (19) 2280-2282
  • 22 Weng W, Hu Z, Pan Y. Macrophage extracellular traps: current opinions and the state of research regarding various diseases. J Immunol Res 2022; 2022: 7050807
  • 23 Delabranche X, Stiel L, Severac F. et al. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock 2017; 47 (03) 313-317
  • 24 Sahu SK, Kulkarni DH, Ozanturk AN, Ma L, Kulkarni HS. Emerging roles of the complement system in host-pathogen interactions. Trends Microbiol 2022; 30 (04) 390-402
  • 25 Abe T, Kubo K, Izumoto S. et al. Complement activation in human sepsis is related to sepsis-induced disseminated intravascular coagulation. Shock 2020; 54 (02) 198-204
  • 26 de Nooijer AH, Kotsaki A, Kranidioti E. et al. Complement activation in severely ill patients with sepsis: no relationship with inflammation and disease severity. Crit Care 2023; 27 (01) 63
  • 27 de Jong HK, van der Poll T, Wiersinga WJ. The systemic pro-inflammatory response in sepsis. J Innate Immun 2010; 2 (05) 422-430
  • 28 Sommerfeld O, Medyukhina A, Neugebauer S. et al. Targeting complement C5a receptor 1 for the treatment of immunosuppression in sepsis. Mol Ther 2021; 29 (01) 338-346
  • 29 Levi M, van der Poll T. Coagulation and sepsis. Thromb Res 2017; 149: 38-44
  • 30 Iba T, Watanabe E, Umemura Y. et al; Japanese Surviving Sepsis Campaign Guideline Working Group for disseminated intravascular coagulation. Sepsis-associated disseminated intravascular coagulation and its differential diagnoses. J Intensive Care 2019; 7 (01) 32
  • 31 Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341 (08) 586-592
  • 32 Osterud B, Flaegstad T. Increased tissue thromboplastin activity in monocytes of patients with meningococcal infection: related to an unfavourable prognosis. Thromb Haemost 1983; 49 (01) 5-7
  • 33 Taylor FB, Chang ACK, Peer G, Li A, Ezban M, Hedner U. Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and -8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli . Blood 1998; 91 (05) 1609-1615
  • 34 de Stoppelaar SF, van 't Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost 2014; 112 (04) 666-677
  • 35 Hoshino K, Nakashio M, Maruyama J, Irie Y, Kawano Y, Ishikura H. Validating plasminogen activator inhibitor-1 as a poor prognostic factor in sepsis. Acute Med Surg 2020; 7 (01) e581
  • 36 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 37 Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venousthrombosis and immunothrombosis. Front Immunol 2016; 7: 236
  • 38 McDonald B, Davis RP, Kim SJ. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
  • 39 Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2018; 180 (06) 782-798
  • 40 Silasi-Mansat R, Zhu H, Popescu NI. et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood 2010; 116 (06) 1002-1010
  • 41 Wu C, Lu W, Zhang Y. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 2019; 50 (06) 1401-1411.e4
  • 42 Walton AH, Muenzer JT, Rasche D. et al. Reactivation of multiple viruses in patients with sepsis. PLoS One 2014; 9 (02) e98819
  • 43 Limaye AP, Kirby KA, Rubenfeld GD. et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 2008; 300 (04) 413-422
  • 44 Torres LK, Pickkers P, van der Poll T. Sepsis-induced immunosuppression. Annu Rev Physiol 2022; 84: 157-181
  • 45 Finfer S, Venkatesh B, Hotchkiss RS, Sasson SC. Lymphopenia in sepsis-an acquired immunodeficiency?. Immunol Cell Biol 2023; 101 (06) 535-544
  • 46 Hohlstein P, Gussen H, Bartneck M. et al. Prognostic relevance of altered lymphocyte subpopulations in critical illness and sepsis. J Clin Med 2019; 8 (03) 353
  • 47 Boomer JS, To K, Chang KC. et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306 (23) 2594-2605
  • 48 Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 2013; 13 (12) 862-874
  • 49 Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015; 15 (08) 486-499
  • 50 Guignant C, Lepape A, Huang X. et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care 2011; 15 (02) R99
  • 51 Hotchkiss RS, Colston E, Yende S. et al. Immune checkpoint inhibition in sepsis: a phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med 2019; 45 (10) 1360-1371
  • 52 Watanabe E, Nishida O, Kakihana Y. et al. Pharmacokinetics, pharmacodynamics, and safety of nivolumab in patients with sepsis-induced immunosuppression: a multicenter, open-label phase 1/2 study. Shock 2020; 53 (06) 686-694
  • 53 Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30 (10) 475-487
  • 54 Venet F, Lukaszewicz AC, Payen D, Hotchkiss R, Monneret G. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr Opin Immunol 2013; 25 (04) 477-483
  • 55 Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007; 447 (7147) 972-978
  • 56 Naik S, Fuchs E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 2022; 607 (7918) 249-255
  • 57 Gao YL, Yao Y, Zhang X. et al. Regulatory T cells: angels or demons in the pathophysiology of sepsis?. Front Immunol 2022; 13: 829210
  • 58 Xu J, Li J, Xiao K. et al. Dynamic changes in human HLA-DRA gene expression and Th cell subsets in sepsis: indications of immunosuppression and associated outcomes. Scand J Immunol 2020; 91 (01) e12813
  • 59 Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D. Myeloid-derived suppressor cells in bacterial infections. Front Cell Infect Microbiol 2016; 6: 37
  • 60 Reyes M, Filbin MR, Bhattacharyya RP. et al. An immune-cell signature of bacterial sepsis. Nat Med 2020; 26 (03) 333-340
  • 61 Kwok AJ, Allcock A, Ferreira RC. et al; Emergency Medicine Research Oxford (EMROx). Neutrophils and emergency granulopoiesis drive immune suppression and an extreme response endotype during sepsis. Nat Immunol 2023; 24 (05) 767-779
  • 62 O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016; 16 (09) 553-565
  • 63 Liu W, Liu T, Zheng Y, Xia Z. Metabolic reprogramming and its regulatory mechanism in sepsis-mediated inflammation. J Inflamm Res 2023; 16: 1195-1207
  • 64 Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S, Dikshit M. Glycolysis dependent lactate formation in neutrophils: a metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865 (12) 165542
  • 65 Shao C, Lin S, Liu S. et al. HIF1α-induced glycolysis in macrophage is essential for the protective effect of ouabain during endotoxemia. Oxid Med Cell Longev 2019
  • 66 Kelly B, O'Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015; 25 (07) 771-784
  • 67 Liu TF, Vachharajani VT, Yoza BK, McCall CE. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem 2012; 287 (31) 25758-25769
  • 68 Zhou HC, Yu WW, Yan XY. et al. Lactate-driven macrophage polarization in the inflammatory microenvironment alleviates intestinal inflammation. Front Immunol 2022; 13: 1013686
  • 69 Yang K, Xu J, Fan M. et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol 2020; 11 DOI: 10.3389/fimmu.2020.587913.
  • 70 Ivashkiv LB. The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol 2020; 20 (02) 85-86
  • 71 Cheng SC, Scicluna BP, Arts RJW. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 2016; 17 (04) 406-413
  • 72 Kraft BD, Chen L, Suliman HB, Piantadosi CA, Welty-Wolf KE. Peripheral blood mononuclear cells demonstrate mitochondrial damage clearance during sepsis. Crit Care Med 2019; 47 (05) 651-658
  • 73 Venet F, Demaret J, Blaise BJ. et al. IL-7 restores T lymphocyte immunometabolic failure in septic shock patients through mTOR activation. J Immunol 2017; 199 (05) 1606-1615
  • 74 Bekkering S, Domínguez-Andrés J, Joosten LAB, Riksen NP, Netea MG. Trained immunity: reprogramming innate immunity in health and disease. Annu Rev Immunol 2021; 39: 667-693
  • 75 Netea MG, Joosten LAB, Latz E. et al. Trained immunity: a program of innate immune memory in health and disease. Science 2016; 352 (6284) aaf1098
  • 76 Ifrim DC, Quintin J, Joosten LAB. et al. Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clin Vaccine Immunol 2014; 21 (04) 534-545
  • 77 Cheng SC, Quintin J, Cramer RA. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014; 345 (6204) 1250684
  • 78 Arts RJW, Carvalho A, La Rocca C. et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep 2016; 17 (10) 2562-2571
  • 79 Arts RJW, Novakovic B, Ter Horst R. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 2016; 24 (06) 807-819
  • 80 Bomans K, Schenz J, Sztwiertnia I, Schaack D, Weigand MA, Uhle F. Sepsis induces a long-lasting state of trained immunity in bone marrow monocytes. Front Immunol 2018; 9 (NOV): 2685
  • 81 Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S. et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 2020; 183 (02) 315-323.e9
  • 82 Koekenbier EL, Fohse K, van de Maat JS. et al; BCG-PRIME study group. Bacillus Calmette-Guérin vaccine for prevention of COVID-19 and other respiratory tract infections in older adults with comorbidities: a randomized controlled trial. Clin Microbiol Infect 2023; 29 (06) 781-788
  • 83 Pittet LF, Messina NL, Orsini F. et al; BRACE Trial Consortium Group. Randomized trial of BCG vaccine to protect against Covid-19 in health care workers. N Engl J Med 2023; 388 (17) 1582-1596
  • 84 Schrijver DP, Röring RJ, Deckers J. et al. Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells. Nat Biomed Eng 2023; 7 (09) 1097-1112
  • 85 Davenport EE, Burnham KL, Radhakrishnan J. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med 2016; 4 (04) 259-271
  • 86 Antcliffe DB, Burnham KL, Al-Beidh F. et al. Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH randomized trial. Am J Respir Crit Care Med 2019; 199 (08) 980-986
  • 87 Cano-Gamez E, Burnham KL, Goh C. et al; GAinS Investigators. An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression. Sci Transl Med 2022; 14 (669) eabq4433
  • 88 Scicluna BP, van Vught LA, Zwinderman AH. et al; MARS consortium. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med 2017; 5 (10) 816-826
  • 89 Sweeney TE, Azad TD, Donato M. et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med 2018; 46 (06) 915-925
  • 90 Matthay MA, Zemans RL, Zimmerman GA. et al. Acute respiratory distress syndrome. Nat Rev Dis Prim 2019; 5 (01) 915
  • 91 Sinha P, Kerchberger VE, Willmore A. et al. Identifying molecular phenotypes in sepsis: an analysis of two prospective observational cohorts and secondary analysis of two randomised controlled trials. Lancet Respir Med 2023; 11 (11) 965-974
  • 92 Schuurman AR, Sloot PMA, Wiersinga WJ, van der Poll T. Embracing complexity in sepsis. Crit Care 2023; 27 (01) 102
  • 93 Schuurman AR, Reijnders TDY, Kullberg RFJ, Butler JM, van der Poll T, Wiersinga WJ. Sepsis: deriving biological meaning and clinical applications from high-dimensional data. Intensive Care Med Exp 2021; 9 (01) 27