Subscribe to RSS
DOI: 10.1055/s-0043-1775364
His-Tagging: Exploring Precise Chemical Modification of Histidine-Containing Bioactive Peptide Sequences
B.P. and G.S. express their sincere appreciation to the Ministry of Education (MoE), India for support through the Scheme for Transformational and Advanced Research in Sciences (STARS-2), IISc program (Grant No. MoE/STARS/2023-0297). B.P. and G.S. also express sincere gratitude to the University Grants Commission (UGC), Faculty Recharge Program.
Abstract
The modification of biomolecules, particularly peptides, has garnered considerable attention from researchers, effectively serving as a connection between chemistry and biology. The modification of peptides can facilitate, among others, the generation of peptide drugs, antibody–drug conjugates, and probes for molecular imaging. Herein, we have carefully curated reactions and chemical transformations of bioactive peptide sequences equipped with histidine amino acids that are conducive for biological applications. This Account also highlights strategies for the chemical modification of histidine that might capture the imagination of both peptide researchers and synthetic chemists.
1 Introduction
2 Histidine Modification in Bioactive Peptides and Proteins
3 Remote Bioactive Peptides and Protein Modification Adjacent to Histidine
4 Conclusions and Future Directions
Key words
alkenylation - C–H activation - imidazole - macrocyclization - metal coordination - remote modificationPublication History
Received: 23 February 2024
Accepted after revision: 06 May 2024
Article published online:
03 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tornesello A, Buonaguro L, Tornesello M, Buonaguro F. Molecules 2017; 22: 1282
- 1b Bozovičar K, Bratkovič T. Int. J. Mol. Sci. 2021; 22: 1611
- 2 Zaky AA, Simal-Gandara J, Eun J.-B, Shim J.-H, Abd El-Aty AM. Front. Nutr. 2022; 8: 815640
- 3a Bruno BJ, Miller GD, Lim CS. Ther. Delivery 2013; 4: 1443
- 3b Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Int. J. Mol. Sci. 2023; 24: 7842
- 4a Najafian L. Food Funct. 2023; 14: 5835
- 4b Wan X, Liu H, Sun Y, Zhang J, Chen X, Chen N. Oncol. Lett. 2017; 13: 3997
- 5a Adams ZC, Silvestri AP, Chiorean S, Flood DT, Balo BP, Shi Y, Holcomb M, Walsh SI, Maillie CA, Pierens GK, Forli S, Rosengren KJ, Dawson PE. ACS Cent. Sci. 2023; 9: 648
- 5b Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Signal Transduction Targeted Ther. 2022; 7: 48
- 6a Bhat A, Roberts LR, Dwyer JJ. Eur. J. Med. Chem. 2015; 94: 471
- 6b Avan I, Hall CD, Katritzky AR. Chem. Soc. Rev. 2014; 43: 3575
- 6c Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra C. J. Org. Chem. Front. 2021; 8: 6720
- 7a Bhandari D, Rafiq S, Gat Y, Gat P, Waghmare R, Kumar V. Int. J. Pept. Res. Ther. 2020; 26: 139
- 7b Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Signal Transduction Targeted Ther. 2023; 8: 116
- 8a Mustafa K, Kanwal J, Musaddiq S, Khakwani S. Bioactive Peptides and Their Natural Sources . In Functional Foods and Nutraceuticals . Springer International Publishing; Cham: 2020: 75-97
- 8b Akbarian M, Khani A, Eghbalpour S, Uversky VN. Int. J. Mol. Sci. 2022; 23: 1445
- 9a Cicero AF. G, Fogacci F, Colletti A. Br. J. Pharmacol. 2017; 174: 1378
- 9b Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Signal Transduction Targeted Ther. 2023; 8: 152
- 9c Antony P, Vijayan R. Int. J. Mol. Sci. 2021; 22: 9059
- 10 Singh BP, Vij S, Hati S. Peptides 2014; 54: 171
- 11 Guengerich FP. Drug Metab. Pharmacokinet. 2011; 26: 3
- 12 Jenny KA, Ruggles EL, Liptak MD, Masterson DS, Hondal RJ. J. Pept. Sci. 2021; 27: e3339
- 13 Che J, Jones LH. RSC Med. Chem. 2022; 13: 1121
- 14a He J, Ghosh P, Nitsche C. Chem. Sci. 2024; 15: 2300
- 14b Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Synth. Syst. Biotechnol. 2021; 6: 32
- 14c Tamura T, Hamachi I. J. Am. Chem. Soc. 2019; 141: 2782
- 14d Bednar RM, Jana S, Kuppa S, Franklin R, Beckman J, Antony E, Cooley RB, Mehl RA. ACS Chem. Biol. 2021; 16: 2612 https://doi.org/10.1021/acschembio.1c00649
- 14e Adhikari A, Bhattarai BR, Aryal A, Thapa N, KC P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. RSC Adv. 2021; 11: 38126
- 14f Meineke B, Heimgärtner J, Eirich J, Landreh M, Elsässer SJ. Cell Rep. 2020; 31: 107811
- 15a Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Adv. Drug Delivery Rev. 2017; 110–111: 38
- 15b Rizvi SF. A, Zhang L, Zhang H, Fang Q. ACS Pharmacol. Transl. Sci. 2024; 7: 309
- 17a Neville N, Lehotsky K, Yang Z, Klupt KA, Denoncourt A, Downey M, Jia Z. Cell Rep. 2023; 42: 113082
- 17b Lehotsky K, Neville N, Jia Z. STAR Protoc. 2024; 5: 102947
- 18 Ghosh D, Peng X, Leal J, Mohanty RP. J. Pharm. Invest. 2018; 48: 89
- 19 Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Amino Acids 2020; 52: 1207
- 20a Lorenzon EN, Piccoli JP, Santos-Filho NA, Cilli EM. Protein Pept. Lett. 2019; 26: 98
- 20b Yan Y, Chen X. Amino Acids 2011; 41: 1081
- 21a Garton M, Nim S, Stone TA, Wang KE, Deber CM, Kim PM. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 1505
- 21b Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Molecules 2020; 25: 2314
- 21c Kremsmayr T, Aljnabi A, Blanco-Canosa JB, Tran HN. T, Emidio NB, Muttenthaler M. J. Med. Chem. 2022; 65: 6191
- 21d Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Comput. Struct. Biotechnol. J. 2019; 17: 263
- 21e Al Musaimi O, Lombardi L, Williams DR, Albericio F. Pharmaceuticals 2022; 15: 1283
- 22 Chalker JM, Bernardes GJ. L, Davis BG. Acc. Chem. Res. 2011; 44: 730
- 23 de Gruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863
- 24a Gentilucci L, De Marco R, Cerisoli L. Curr. Pharm. Des. 2010; 16: 3185
- 24b Lander AJ, Jin Y, Luk LY. P. ChemBioChem 2023; 24: e202200537
- 24c Du Y, Li L, Zheng Y, Liu J, Gong J, Qiu Z, Li Y, Qiao J, Huo Y.-X. Appl. Environ. Microbiol. 2022; 88: e01617-22
- 24d Goto Y, Suga H. Acc. Chem. Res. 2021; 54: 3604
- 25a Li W, O’Brien-Simpson NM, Yao S, Tailhades J, Reynolds EC, Dawson RM, Otvos L, Hossain MA, Separovic F, Wade JD. Chem. Eur. J. 2017; 23: 390
- 25b Deng J.-R, Lai NC.-H, Kung KK.-Y, Yang B, Chung S.-F, Leung AS.-L, Choi M.-C, Leung Y.-C, Wong M.-K. Commun. Chem. 2020; 3: 67
- 25c Arbour CA, Mendoza LG, Stockdill JL. Org. Biomol. Chem. 2020; 18: 7253
- 26a Frenkel-Pinter M, Haynes JW, Mohyeldin AM, Martin C, Sargon AB, Petrov AS, Krishnamurthy R, Hud NV, Williams LD, Leman LJ. Nat. Commun. 2020; 11: 3137
- 26b Sheard DE, Li W, O’Brien-Simpson NM, Separovic F, Wade JD. Biologics 2021; 2: 15
- 27a Harris KS, Durek T, Kaas Q, Poth AG, Gilding EK, Conlan BF, Saska I, Daly NL, Van Der Weerden NL, Craik DJ, Anderson MA. Nat. Commun. 2015; 6: 10199
- 27b Clark RJ, Fischer H, Dempster L, Daly NL, Rosengren KJ, Nevin ST, Meunier FA, Adams DJ, Craik DJ. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 13767
- 27c Deechongkit S, Kelly JW. J. Am. Chem. Soc. 2002; 124: 4980
- 28a Hosono Y, Uchida S, Shinkai M, Townsend CE, Kelly CN, Naylor MR, Lee H.-W, Kanamitsu K, Ishii M, Ueki R, Ueda T, Takeuchi K, Sugita M, Akiyama Y, Lokey SR, Morimoto J, Sando S. Nat. Commun. 2023; 14: 1416
- 28b D’Accolti M, Bellotti D, Dzień E, Leonetti C, Leveraro S, Albanese V, Marzola E, Guerrini R, Caselli E, Rowińska-Żyrek M, Remelli M. Sci. Rep. 2023; 13: 18228
- 28c Doedens L, Opperer F, Cai M, Beck JG, Dedek M, Palmer E, Hruby VJ, Kessler H. J. Am. Chem. Soc. 2010; 132: 8115
- 29 Hamley IW. Biomacromolecules 2014; 15: 1543
- 30a Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Chem. Sci. 2016; 7: 2492
- 30b Tortorella A, Leone L, Lombardi A, Pizzo E, Bosso A, Winter R, Petraccone L, Del Vecchio P, Oliva R. Sci. Rep. 2023; 13: 3733
- 31 Eildal JN. N, Hultqvist G, Balle T, Stuhr-Hansen N, Padrah S, Gianni S, Strømgaard K, Jemth P. J. Am. Chem. Soc. 2013; 135: 12998
- 32a Failla M, Floresta G, Abbate V. RSC Med. Chem. 2023; 14: 592
- 32b Hungnes IN, Pham TT, Rivas C, Jarvis JA, Nuttall RE, Cooper SM, Young JD, Blower PJ, Pringle PG, Ma MT. Inorg. Chem. 2023; 62: 20608
- 33 Boutureira O, Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
- 34a Cravatt BF, Wright AT, Kozarich JW. Annu. Rev. Biochem. 2008; 77: 383
- 34b Heal WP, Dang TH. T, Tate EW. Chem. Soc. Rev. 2011; 40: 246
- 34c Spradlin JN, Zhang E, Nomura DK. Acc. Chem. Res. 2021; 54: 1801
- 35a Tekaia F, Yeramian E, Dujon B. Gene 2002; 297: 51
- 35b Liao S.-M, Du Q.-S, Meng J.-Z, Pang Z.-W, Huang R.-B. Chem. Cent. J. 2013; 7: 44
- 36 Nakane K, Sato S, Niwa T, Tsushima M, Tomoshige S, Taguchi H, Ishikawa M, Nakamura H. J. Am. Chem. Soc. 2021; 143: 7726
- 37 Uchida K, Stadtman ER. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 4544
- 38 Rook ML, Musgaard M, MacLean DM. J. Physiol. 2021; 599: 417
- 39a Jia S, He D, Chang CJ. J. Am. Chem. Soc. 2019; 141: 7294
- 39b https://blog.papyrusbio.com/histidine-bioconjugation-protocols-and-theory/
- 40 Chen X, Ye F, Luo X, Liu X, Zhao J, Wang S, Zhou Q, Chen G, Wang P. J. Am. Chem. Soc. 2019; 141: 18230
- 41 Wan C, Wang Y, Lian C, Chang Q, An Y, Chen J, Sun J, Hou Z, Yang D, Guo X, Yin F, Wang R, Li Z. Chem. Sci. 2022; 13: 8289
- 42 Rawale DG, Thakur K, Sreekumar P, Sajeev TK, Ramesh A, Adusumalli SR, Mishra RK, Rai V. Chem. Sci. 2021; 12: 6732
- 43a Jensen JL, Kuczera K, Roy S, Schöneich C. Cell Mol. Biol. 2000; 46: 685
- 43b Jensen JL, Kolvenbach C, Roy S, Schöneich C. Pharm. Res. 2000; 17: 190
- 44 Chavan SS, Saze H, Tanaka F. Adv. Synth. Catal. 2023; 365: 2171
- 45a Li X, Ma H, Dong S, Duan X, Liang S. Talanta 2004; 62: 367
- 45b Zamora R, Alaiz M, Hidalgo FJ. Chem. Res. Toxicol. 1999; 12: 654
- 46 Joshi PN, Rai V. Chem. Commun. 2019; 55: 1100
- 47a Ohata J, Zeng Y, Segatori L, Ball ZT. Angew. Chem. Int. Ed. 2018; 57: 4015
- 47b Mangubat-Medina AE, Martin SC, Hanaya K, Ball ZT. J. Am. Chem. Soc. 2018; 140: 8401
- 48a Ball ZT. Acc. Chem. Res. 2019; 52: 566
- 48b Ohata J, Minus MB, Abernathy ME, Ball ZT. J. Am. Chem. Soc. 2016; 138: 7472
- 48c Neupane KP, Aldous AR, Kritzer JA. J. Inorg. Biochem. 2014; 139: 65
- 48d Neupane KP, Aldous AR, Kritzer JA. Inorg. Chem. 2013; 52: 2729
- 49 Konkle ME, Elsenheimer KN, Hakala K, Robicheaux JC, Weintraub ST, Hunsicker-Wang LM. Biochemistry 2010; 49: 7272